Mean Square Estimates for Coefficients of Symmetric Power L-Functions

被引:0
作者
Huixue Lao
机构
[1] Shandong Normal University,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2010年 / 110卷
关键词
Fourier coefficients of cusp forms; Symmetric power ; -function; Rankin–Selberg ; -function; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let L(symjf,s) be the jth symmetric power L-function attached to a holomorphic Hecke eigencuspform f(z) for the full modular group, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{\mathrm{sym}^{j}f}(n)$\end{document} denote its nth coefficient. In this paper we are able to prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{3}f}(n)\bigg|^{2}dy=O\bigl(x^{2}\bigr),$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{4}f}(n)\bigg|^{2}dy=O\bigl(x^{\frac{11}{5}}\log x\bigr).$$\end{document}
引用
收藏
页码:1127 / 1136
页数:9
相关论文
共 17 条
  • [1] Chandrasekharan K.(1964)On the mean value of the error term for a class of arithmetical functions Acta Math. 112 41-67
  • [2] Narasimhan R.(2004)On the complex moments of symmetric power Int. Math. Res. Not. 31 1562-1618
  • [3] Cogdell J.(1974)-functions at Inst. Hautes Etudes Sci. Publ. Math. 43 29-39
  • [4] Michel P.(2008)=1 St. Petersburg Math. J. 19 853-866
  • [5] Deligne P.(1978)La conjecture de Weil Ann. Sci. École Norm. Sup. 11 471-552
  • [6] Fomenko O.M.(2003)Mean value theorems for automorphic J. Am. Math. Soc. 16 139-183
  • [7] Gelbart S.(2002)-functions Ann. Math. 155 837-893
  • [8] Jacquet H.(2002)A relation between automorphic representations of GL(2) and GL(3) Duke Math. J. 112 177-197
  • [9] Kim H.(1999)Functoriality for the exterior square of Mh. Math. 128 111-129
  • [10] Kim H.(2006) and symmetric fourth of Trans. Am. Math. Soc. 359 441-472