ON THE STRUCTURE OF THE AFFINE ASYMPTOTIC HECKE ALGEBRAS

被引:0
|
作者
ROMAN BEZRUKAVNIKOV
STEFAN DAWYDIAK
GALYNA DOBROVOLSKA
机构
[1] Department of Mathematics MIT,
[2] Max-Planck-Institut für Mathematik,undefined
[3] Ariel University,undefined
来源
Transformation Groups | 2023年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
According to a conjecture of Lusztig, the asymptotic affine Hecke algebra should admit a description in terms of the Grothedieck group of sheaves on the square of a finite set equivariant under the action of the centralizer of a nilpotent element in the reductive group. A weaker form of this statement, allowing for possible central extensions of stabilizers of that action, has been proved by the first named author with Ostrik. In the present paper, we describe an example showing that nontrivial central extensions do arise, thus the above weaker statement is optimal.
引用
收藏
页码:1059 / 1079
页数:20
相关论文
共 50 条
  • [1] ON THE STRUCTURE OF THE AFFINE ASYMPTOTIC HECKE ALGEBRAS
    Bezrukavnikov, Roman
    Dawydiak, Stefan
    Dobrovolska, Galyna
    TRANSFORMATION GROUPS, 2022, 28 (3) : 1059 - 1079
  • [2] Quantum affine algebras and affine Hecke algebras
    Chari, V
    Pressley, A
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) : 295 - 326
  • [3] Double affine Hecke algebras and elliptic Hecke algebras
    Takebayashi, T
    JOURNAL OF ALGEBRA, 2002, 253 (02) : 314 - 349
  • [4] AFFINE QUANTUM SCHUR ALGEBRAS AND AFFINE HECKE ALGEBRAS
    Fu, Qiang
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 270 (02) : 351 - 366
  • [5] Schwartz space of parabolic basic affine space and asymptotic Hecke algebras
    Braverman, Alexander
    Kazhdan, David
    REPRESENTATIONS OF REDUCTIVE GROUPS, 2019, 101 : 31 - 43
  • [6] Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory
    Ram, A
    Ramagge, J
    TRIBUTE TO C.S. SESHADRI: A COLLECTION OF ARTICLES ON GEOMETRY AND REPRESENTATION THEORY, 2003, : 428 - 466
  • [7] Double affine Hecke algebras and Hecke algebras associated with quivers
    Varagnolo, Michela
    Vasserot, Eric
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 191 - 211
  • [8] Modified affine Hecke algebras and quiver Hecke algebras of type A
    Hu, Jun
    Li, Fang
    JOURNAL OF ALGEBRA, 2020, 541 : 219 - 269
  • [9] Tangles in affine Hecke algebras
    Morton, Hugh
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2025, 34 (03)
  • [10] Affine Hecke algebras and their representations
    Solleveld, Maarten
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (05): : 1005 - 1082