Assessment of artificial selection in maize (Zea mays L.) and Asian rice (Oryza sativa L.) using QTL data

被引:0
|
作者
Hailan Liu
机构
[1] Sichuan Agricultural University,Maize Research Institute
来源
Genetic Resources and Crop Evolution | 2017年 / 64卷
关键词
Artificial selection; QTL sign test; L.; L.;
D O I
暂无
中图分类号
学科分类号
摘要
Maize (Zea mays L.) and Asian rice (Oryza sativa L.), two most important cereals for human nutrition, have undergone strong artificial selection during a long period of time. Currently, a number of genes with stronger signals of selection have been identified through combining genomic and population genetic approach, but research on artificial selection of maize and Asian rice is scarcely done from the perspective of phenotypic difference of a number of agronomic traits. In this study, such an investigation was carried out on the basis of 179 published studies about phenotypic quantitative trait locus (QTL) mapping of Zea and Oryza species via QTL sign test. At the overall level, the proportions of antagonistic QTLs of Zea and Oryza species were 0.2446 and 0.2382 respectively, deviating significantly from neutrality. It indicated that these two genera have undergone similar selection strength during their evolutionary process. A previous study showed that 4 traits undergoing the directional selection during domestication were identified in Asian rice via QTL sign test, and 16 individual traits in Asian rice and 38 ones in maize that newly detected in this study deviated significantly from neutrality as well, demonstrating the dominant influence of artificial selection on them. Moreover, analysis of different categories of cross type including O. sativa × Oryza rufipogon (perennial and annual forms) crosses, maize × teosinte (Zea mays subsp. parviglumis) crosses, O. sativa × O. sativa crosses, and maize × maize crosses showed that their proportions of antagonistic QTLs were 0.1869, 0.1467, 0.2649, and 0.2618 respectively. These results revealed that selection strength of domestication is significantly stronger than that of modern genetic improvement. However, interestingly, the proportion of antagonistic QTLs (0.1591) in maize × maize with long-term selection was very similar to that (0.1467) in the maize × teosinte (Zea mays subsp. parviglumis) crosses. It suggested that some favorable traits could be cultivated within a few decades if we carry out strong selection. In addition, the proportions of antagonistic QTLs of the widely cultivated hybrids of rice (Minghui 63 × Zhenshan 97) and maize (Zheng 58 × Chang 7-2) in China were 0.309 and 0.3472 respectively. It suggested that selection during modern genetic improvement has significantly acted on them.
引用
收藏
页码:1561 / 1568
页数:7
相关论文
共 50 条
  • [31] Participatory selection assisted by DNA markers for enhanced drought resistance and productivity in rice (Oryza sativa L.)
    A. Kanbar
    H. E. Shashidhar
    Euphytica, 2011, 178 : 137 - 150
  • [32] QTL analysis of floral traits of rice (Oryza Sativa L.) under well-watered and drought stress conditions
    Hu Songping
    Zhou Ying
    Zhang Lin
    Zhu Xudong
    Wang Zhenggong
    Li Lin
    Luo Lijun
    Zhou Qingming
    Genes & Genomics, 2009, 31 : 173 - 181
  • [33] Genetic dissection of rice (Oryza sativa L.) tiller, plant height, and grain yield based on QTL mapping and metaanalysis
    L. Lei
    H. L. Zheng
    J. G. Wang
    H. L. Liu
    J. Sun
    H. W. Zhao
    L. M. Yang
    D. T. Zou
    Euphytica, 2018, 214
  • [34] Leaf nitrate accumulation influences the photorespiration of rice (Oryza sativa L.) seedlings
    Yuming Sun
    Yingrui Li
    Bo Wang
    Yong Li
    Lei Ding
    Min Wang
    Luis Alejandro Jose Mur
    Xiaorong Fan
    Qirong Shen
    Shiwei Guo
    Plant and Soil, 2020, 456 : 323 - 338
  • [35] Mapping of QTLs for low temperature response in seedlings of rice (Oryza sativa L.)
    Syuhei Misawa
    Naoki Mori
    Shigeo Takumi
    Shinya Yoshida
    Chiharu Nakamura
    Cereal Research Communications, 2000, 28 : 33 - 40
  • [36] Differential regulation of proteins in rice (Oryza sativa L.) under iron deficiency
    Lin Chen
    Chengqiang Ding
    Xiufeng Zhao
    Junxu Xu
    Alim Abdul Mohammad
    Shaohua Wang
    Yanfeng Ding
    Plant Cell Reports, 2015, 34 : 83 - 96
  • [37] Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.)
    Y. Xue
    S. Q. Zhang
    Q. H. Yao
    R. H. Peng
    A. S. Xiong
    X. Li
    W. M. Zhu
    Y. Y. Zhu
    D. S. Zha
    Euphytica, 2008, 164 : 739 - 744
  • [38] Sucrose is involved in the regulation of iron deficiency responses in rice (Oryza sativa L.)
    Peng-Fei Chen
    Lin Chen
    Zheng-Rong Jiang
    Gao-Peng Wang
    Shao-Hua Wang
    Yan-Feng Ding
    Plant Cell Reports, 2018, 37 : 789 - 798
  • [39] Identification of a new hybrid sterility gene in rice (bi Oryza sativa L.)
    Zhigang Zhao
    Chunming Wang
    Ling Jiang
    Susong Zhu
    Hiroshi Ikehashi
    Jianmin Wan
    Euphytica, 2006, 151 : 331 - 337
  • [40] Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.)
    Jiehua Qiu
    Yuxuan Hou
    Xiaohong Tong
    Yifeng Wang
    Haiyan Lin
    Qing Liu
    Wen Zhang
    Zhiyong Li
    Babi R. Nallamilli
    Jian Zhang
    Plant Molecular Biology, 2016, 90 : 249 - 265