Stability of Strongly Gauduchon Manifolds Under Modifications

被引:0
|
作者
Dan Popovici
机构
[1] Université Paul Sabatier,Institut de Mathématiques de Toulouse
来源
关键词
Closed positive (1,1)-current; Compact complex Hermitian manifold; Direct and inverse image of a current; Proper holomorphic bimeromorphic map; Strongly Gauduchon manifold; 53C55; 14E05; 32U40; 32H04; 32G05;
D O I
暂无
中图分类号
学科分类号
摘要
In our previous works on deformation limits of projective and Moishezon manifolds, we introduced and made crucial use of the notion of strongly Gauduchon metrics as a reinforcement of the earlier notion of Gauduchon metrics. Using direct and inverse images of closed positive currents of type (1,1) and regularization, we now show that compact complex manifolds carrying strongly Gauduchon metrics are stable under modifications. This stability property, known to fail for compact Kähler manifolds, mirrors the modification stability of balanced manifolds proved by Alessandrini and Bassanelli.
引用
收藏
页码:653 / 659
页数:6
相关论文
共 50 条
  • [21] On Compact Hermitian Manifolds with Flat Gauduchon Connections
    Yang, Bo
    Zheng, Fang Yang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (08) : 1259 - 1268
  • [22] Semistable Higgs Bundles Over Compact Gauduchon Manifolds
    Nie, Yanci
    Zhang, Xi
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 627 - 642
  • [23] Stable reflexive sheaves over compact Gauduchon manifolds
    Chen, Zeng
    Zhang, Chuanjing
    SCIENCE CHINA-MATHEMATICS, 2025, 68 (04) : 891 - 916
  • [24] SKT HYPERBOLIC AND GAUDUCHON HYPERBOLIC COMPACT COMPLEX MANIFOLDS
    Marouani, Samir
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2024, 152 (03):
  • [25] Semistable Higgs Bundles Over Compact Gauduchon Manifolds
    Yanci Nie
    Xi Zhang
    The Journal of Geometric Analysis, 2018, 28 : 627 - 642
  • [26] ON A VARIATIONAL THEOREM OF GAUDUCHON AND TORSION-CRITICAL MANIFOLDS
    Zhang, Dongmei
    Zheng, Fangyang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1749 - 1762
  • [27] Stable reflexive sheaves over compact Gauduchon manifolds
    Zeng Chen
    Chuanjing Zhang
    Science China(Mathematics), 2025, 68 (04) : 891 - 916
  • [28] HIGGS BUNDLES OVER NON-COMPACT GAUDUCHON MANIFOLDS
    Zhang, Chuanjing
    Zhang, Pan
    Zhang, Xi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3735 - 3759
  • [29] Semi-stable quiver bundles over Gauduchon manifolds
    Chen, Dan-Ni
    Cheng, Jing
    Shen, Xiao
    Zhang, Pan
    AIMS MATHEMATICS, 2023, 8 (05): : 11546 - 11556
  • [30] Semi-stability for bi-Holomorphic pairs over compact bi-Hermitian Gauduchon manifolds
    Ruixin Wang
    Journal of Geometry, 2021, 112