Heisenberg uncertainty inequality for Gabor transform on nilpotent Lie groups

被引:0
作者
K. Smaoui
K. Abid
机构
[1] Sfax University,Higher Institute of Information Technology and Multimedia, Pôle Technologique de Sfax
[2] Sfax University,Faculty of Sciences
来源
Analysis Mathematica | 2022年 / 48卷
关键词
Heisenberg uncertainty inequality; nilpotent Lie group; Gabor transform; Plancherel formula; primary 22E25; secondary 43A25; 43A32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define and prove an analog of the Heisenberg uncertainty inequality for Gabor transform in the setup of connected, simply connected nilpotent Lie groups. When G is connected nilpotent and has a non-compact center, a proof of such an analog is given for functions in the Schwartz space of G. The representation theory and a localized Plancherel formula are fundamental tools in the proof of our results.
引用
收藏
页码:147 / 171
页数:24
相关论文
共 23 条
[1]  
Bonami A(2003)Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms Rev. Mat. Iberoam. 19 23-55
[2]  
Demange B(2016)Heisenberg uncertainty inequality for Gabor transform J. Math. Inequal. 10 737-749
[3]  
Jaming P(2003)Estimate of J. Funct. Anal. 199 508-520
[4]  
Bansal A(2007)-Fourier transform norm on nilpotent Lie groups Adv. Math. 215 616-625
[5]  
Kumar A(1998)Heisenberg—Pauli—Weyl uncertainty inequalities and polynomial volume growth J. Math. Phys. 39 4016-4040
[6]  
Baklouti A(2012)Separability, positivity, and minimum uncertainty in time-frequency energy distributions Bull. Belg. Math. Soc. Simon Stevin 19 683-701
[7]  
Smaoui K(1991)Continuous Gabor transform for a class of non-Abelian groups IEEE Trans. Inform. Theory 39 202-204
[8]  
Ludwig J(2001)Optimality property of the gaussian window spectrogram Math. Proc. Camb. Philos. Soc. 131 487-494
[9]  
Ciatti P(2018)Hardy’s theorem for nilpotent Lie groups Int. J. Math. 29 1850086-145
[10]  
Ricci F(2019)Heisenberg—Pauli—Weyl inequality for connected nilpotent Lie groups Asian-European J. Math. 12 1950065-226