On invariant orthants of bilinear systems

被引:7
作者
Sachkov Yu.L. [1 ]
机构
[1] Program Systems Institute, Russian Academy of Sciences
关键词
Bilinear systems; Controllability; Invariant domains; Orthant; Sign-symmetric matrices;
D O I
10.1023/A:1022829201840
中图分类号
学科分类号
摘要
A characterization of n × n matrices A such that the corresponding linear vector field Ax has invariant orthants in ℝn is obtained. This result is then applied to give necessary global controllability conditions for bilinear systems.
引用
收藏
页码:137 / 147
页数:10
相关论文
共 18 条
[1]  
Boothby W.M., Wilson E., Determination of the transitivity of bilinear systems, SIAM J. Control Optimiz., 20, pp. 634-644, (1982)
[2]  
Bruni C., Di Pillo G., Koch G., Bilinear systems: An appealing class of "nearly linear" systems in theory and applications, IEEE Trans. Autom. Control, 19, pp. 334-348, (1974)
[3]  
Gauthier J.P., Bernard G., Contrôlabilité des systèmes bilinèaires, SIAM J. Control Optimiz., 20, 3, pp. 377-384, (1982)
[4]  
Hirsch M.W., Convergence in neural nets, Proc. Int. Conf. Neural Networks, 2, pp. 115-125, (1987)
[5]  
Joo I., Tuan N.M., On controllability of some bilinear systems, Comptes Rendus de l'Academic des Sci., 315, pp. 1393-1398, (1992)
[6]  
Jurdjevic V., Kupka I., Control systems subordinated to a group action: Accessibility, J. Differ. Equ., 39, pp. 186-211, (1981)
[7]  
Jurdjevic V., Geometric Control Theory, (1997)
[8]  
Lepe N.L., Geometric method of investigation of controllability of two-dimensional bilinear systems, (Russian) Avtom. i Telemekhanika, 11, pp. 19-25, (1984)
[9]  
Autom. and Remote Control
[10]  
Mohler R.R., Bilinear control processes, Math. Sci. and Engineering, 106, (1973)