Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy

被引:0
|
作者
Juan Du
Juha Harra
Matti Virkki
Jyrki M. Mäkelä
Yuxin Leng
Martti Kauranen
Takayoshi Kobayashi
机构
[1] State Key Laboratory of High Field Laser Physics,Department of Physics
[2] Shanghai Institute of Optics and Fine Mechanics,undefined
[3] Chinese Academy of Sciences,undefined
[4] Tampere University of Technology,undefined
[5] Ultrafast Laser Research Center,undefined
[6] University of Electro-Communications,undefined
[7] JST,undefined
[8] CREST,undefined
[9] K’s Gobancho,undefined
[10] 7 Gobancho,undefined
[11] Chiyoda-ku,undefined
[12] Advanced Ultrafast Laser Center,undefined
[13] National Chiao-Tung University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)−1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states.
引用
收藏
相关论文
共 50 条
  • [21] Surface-enhanced Broad-band Real-time Vibrational Spectroscopy
    Du, J.
    Kobayashi, T.
    Virkki, M.
    Kauranen, M.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2013,
  • [22] Multiresonant nanostructures for surface-enhanced coherent anti-Stokes Raman spectroscopy
    Jahromi, S. Izadshenas
    Herr, T.
    Maslowski, P.
    Slowik, K.
    2021 FIFTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2021, : X170 - X172
  • [23] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [24] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [25] Surface-enhanced Raman spectroscopy
    Xiao Xia Han
    Rebeca S. Rodriguez
    Christy L. Haynes
    Yukihiro Ozaki
    Bing Zhao
    Nature Reviews Methods Primers, 1
  • [26] Surface-enhanced infrared spectroscopy
    Aroca, RF
    Ross, DJ
    Domingo, C
    APPLIED SPECTROSCOPY, 2004, 58 (11) : 324A - 338A
  • [27] Surface-enhanced Raman spectroscopy
    Jürgen Popp
    Thomas Mayerhöfer
    Analytical and Bioanalytical Chemistry, 2009, 394 : 1717 - 1718
  • [28] Surface-enhanced Raman spectroscopy
    Morneau, Dominique
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [29] Surface-Enhanced Raman Spectroscopy
    Stiles, Paul. L.
    Dieringer, Jon A.
    Shah, Nilain C.
    Van Duyne, Richard R.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (601-626) : 601 - 626
  • [30] Surface-enhanced Raman spectroscopy
    Han, Xiao Xia
    Rodriguez, Rebeca S.
    Haynes, Christy L.
    Ozaki, Yukihiro
    Zhao, Bing
    NATURE REVIEWS METHODS PRIMERS, 2022, 1 (01):