On a Subclass of Close-to-Convex Mappings

被引:0
|
作者
Qinghua Xu
Taishun Liu
Xiaosong Liu
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
[2] Huzhou Teachers College,Department of Mathematics
[3] Zhanjiang Normal University,School of Mathematics and Computation Science
来源
Complex Analysis and Operator Theory | 2015年 / 9卷
关键词
Distortion theorem; Growth theorem; Close-to-convex mappings of order ; 32A30; 32H02; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the class of close-to-convex mappings of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is introduced in the unit ball of a complex Banach space, and then, we give the sharp distortion theorems for this class of mappings in the unit ball of a complex Hilbert space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} or the unit polydisc in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document} . As an application, a sharp growth theorem for close-to-convex mappings of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is obtained.
引用
收藏
页码:275 / 286
页数:11
相关论文
共 50 条
  • [31] EXTREME POINTS OF A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    SILVERMAN, H
    TELAGE, DN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A101 - A101
  • [32] On certain subclass of meromorphic close-to-convex functions
    Shi, Lei
    Yi, Jing-Ping
    Wang, Zhi-Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (20) : 10143 - 10149
  • [33] ON THE PROPERTIES OF A CERTAIN SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Li, Wenjuan
    Xu, Qinghua
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (04): : 581 - 588
  • [34] On new subclass of meromorphic close-to-convex functions
    Li, Jin-Dong
    Huang, Guang-Xin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 424 - 428
  • [35] New Subclass of Meromorphic Close-to-Convex Functions
    Soni, Amit
    Kant, Shashi
    JOURNAL OF COMPLEX ANALYSIS, 2013,
  • [36] On a subclass of close-to-convex functions with negative coefficients
    Al-Kharsani, HA
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1998, 23 (1A): : 61 - 78
  • [38] ON CERTAIN SUBCLASS OF MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS
    Goyal, S. P.
    Singh, Onkar
    Kumar, Rakesh
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2013, 9 (01) : 27 - 36
  • [39] SOME INEQUALITIES FOR CONVEX, STARLIKE, AND CLOSE-TO-CONVEX MAPPINGS
    HALLENBECK, DJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A325 - A325
  • [40] SOME INEQUALITIES FOR CONVEX, STARLIKE, AND CLOSE-TO-CONVEX MAPPINGS
    HALLENBECK, DJ
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1974, 24 (12) : 411 - 415