Metamaterial-Inspired Complementary Split Ring Resonator Sensor and Second-Order Approximation for Dielectric Characterization of Fluid

被引:0
作者
Anand Kumar
Manvendra Singh Rajawat
Santosh Kumar Mahto
Rashmi Sinha
机构
[1] Indian Institute of Science,Dept. of Electrical Communication Engineering
[2] Indian Institute of Technology (ISM),Dept. of Mechanical Engineering
[3] Indian Institute of Information Technology,Dept. of Electronics and Communication Engineering
[4] National Institute of Technology,Dept. of Electronics and Communication Engineering
来源
Journal of Electronic Materials | 2021年 / 50卷
关键词
Metamaterial; Complementary split ring resonator (CSRR); microwave sensor; dielectric characterization; permittivity; polynomial regression;
D O I
暂无
中图分类号
学科分类号
摘要
A metamaterial-based complementary split ring resonator (CSRR) structure is used to develop a sensor for dielectric characterization of fluids. The fluid present in the vertical column interacts with the fields around the CSRR causing a shift in the transmission coefficient curve (S21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{21}$$\end{document}). An empirical relationship can be established between the dielectric properties and the resonance frequency and Q-factor. This relationship is used for the dielectric characterization of the fluid. A second-order polynomial function is employed for a better curve fitting of the data to achieve higher accuracy in the prediction of complex permittivity (ε′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon ' $$\end{document} and ε′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon '' $$\end{document}). Multi-variate polynomial regression is used to determine the coefficients of the polynomial function. The proposed sensor predicts the permittivity of the sample with high accuracy. The design is very simple and the sample can be easily changed by replacing the glass tube. The sensor has very high sensitivity and requires a very little volume of the sample.
引用
收藏
页码:5925 / 5932
页数:7
相关论文
共 100 条
  • [21] Jang C(2009)undefined Appl. Phys. Lett. 150 2019-undefined
  • [22] Park J(2011)undefined SENSORS 160 543-undefined
  • [23] Lee H(2015)undefined IEEE Sens. J. 1040 4441-undefined
  • [24] Yun G(2006)undefined IEEE Microwave Wirel. Compon. Lett. undefined undefined-undefined
  • [25] Yook J(1996)undefined J. Chem. Phys. undefined undefined-undefined
  • [26] Cole AJ(undefined)undefined undefined undefined undefined-undefined
  • [27] Young PR(undefined)undefined undefined undefined undefined-undefined
  • [28] Ebrahimi A(undefined)undefined undefined undefined undefined-undefined
  • [29] Withayachumnankul W(undefined)undefined undefined undefined undefined-undefined
  • [30] Al-Sarawi S(undefined)undefined undefined undefined undefined-undefined