Linear complementary pairs of codes over rings

被引:0
作者
Peng Hu
Xiusheng Liu
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Chain rings; LCP of codes; Constacylic codes; Generating polynomials; 94B05; 94B15; 94B60; 94B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we first prove a necessary and sufficient condition for a pairs of linear codes over finite rings to be linear complementary pairs (abbreviated to LCPs). In particular, a judging criterion of free LCP of codes over finite commutative rings is obtained. Using the criterion of free LCP of codes, we construct a maximum-distance-separable (MDS) LCP of codes over ring Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}. Then, all the possible LCP of codes over chain rings are determined. We also generalize the criterions for constacyclic and quasi-cyclic LCP of codes over finite fields to constacyclic and quasi-cyclic LCP of codes over chain rings. Finally, we give a characterization of LCP of codes over principal ideal rings. Under suitable conditions, we also obtain the judging criterion for a pairs of cyclic codes over principal ideal rings Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{k}$$\end{document} to be LCP, and illustrate a MDS LCP of cyclic codes over the principal ideal ring Z15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{15}$$\end{document}.
引用
收藏
页码:2495 / 2509
页数:14
相关论文
共 50 条
[41]   On the algebraic structure of quasi-cyclic codes II:: Chain rings [J].
Ling, S ;
Solé, P .
DESIGNS CODES AND CRYPTOGRAPHY, 2003, 30 (01) :113-130
[42]   Double Cyclic Codes over Fq + vFq [J].
Deng, Tenghui ;
Yang, Jing .
MATHEMATICS, 2020, 8 (10) :1-22
[43]   Constructing Double Cyclic Codes over F2+uF2 for DNA Codes [J].
Kanlaya, Arunothai ;
Klin-Eam, Chakkrid .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 1 (01) :1112-1130
[44]   New EAQEC codes from LCP of codes over finite non-chain ringsNew EAQEC codes from LCP of codes over finite non-chain ringsP. Hu. X. Liu [J].
Peng Hu ;
Xiusheng Liu .
Quantum Information Processing, 24 (3)
[45]   COMPARISON OF THE LEE AND HOMOGENOUS WEIGHTS OVER A FAMILY OF CHAIN RINGS [J].
Alahmadi, Adel ;
Alkenani, Ahmad ;
Alomari, Rahmah ;
Muthana, Najat ;
Sole, Patrick ;
Yildiz, Bahattin .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) :633-647
[46]   Determinants of matrices over commutative finite principal ideal rings [J].
Choosuwan, Parinyawat ;
Jitman, Somphong ;
Udomkavanich, Patanee .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 :126-140
[47]   Equivalence Classes and Structures of Constacyclic Codes Over Finite Fields [J].
Chen, Bocong ;
Dinh, Hai Q. .
ALGEBRA FOR SECURE AND RELIABLE COMMUNICATION MODELING, 2015, 642 :181-223
[48]   CONSTACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm [J].
Dinh, H. A. I. Q. ;
Nguyen, B. A. C. T. ;
Maneejuk, Paravee .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (03) :525-570
[49]   Cyclic codes over a non-commutative finite chain ring [J].
R. Sobhani .
Cryptography and Communications, 2018, 10 :519-530
[50]   On constacyclic codes of length 4ps over Fpm + uFpm [J].
Dinh, Hai Q. ;
Dhompongsa, Sompong ;
Sriboonchitta, Songsak .
DISCRETE MATHEMATICS, 2017, 340 (04) :832-849