Linear complementary pairs of codes over rings

被引:0
作者
Peng Hu
Xiusheng Liu
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Chain rings; LCP of codes; Constacylic codes; Generating polynomials; 94B05; 94B15; 94B60; 94B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we first prove a necessary and sufficient condition for a pairs of linear codes over finite rings to be linear complementary pairs (abbreviated to LCPs). In particular, a judging criterion of free LCP of codes over finite commutative rings is obtained. Using the criterion of free LCP of codes, we construct a maximum-distance-separable (MDS) LCP of codes over ring Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}. Then, all the possible LCP of codes over chain rings are determined. We also generalize the criterions for constacyclic and quasi-cyclic LCP of codes over finite fields to constacyclic and quasi-cyclic LCP of codes over chain rings. Finally, we give a characterization of LCP of codes over principal ideal rings. Under suitable conditions, we also obtain the judging criterion for a pairs of cyclic codes over principal ideal rings Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{k}$$\end{document} to be LCP, and illustrate a MDS LCP of cyclic codes over the principal ideal ring Z15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{15}$$\end{document}.
引用
收藏
页码:2495 / 2509
页数:14
相关论文
共 50 条
[31]   CYCLIC CODES OF LENGTH 2pn OVER FINITE CHAIN RINGS [J].
Silva, Anderson ;
Milies, C. Polcino .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (02) :233-245
[32]   Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration [J].
Cao, Yonglin .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2011, 22 (03) :219-233
[33]   On Repeated-Root Constacyclic Codes of Prime Power Length Over Polynomial Residue Rings [J].
Dinh, Hai Q. .
ALGEBRA FOR SECURE AND RELIABLE COMMUNICATION MODELING, 2015, 642 :225-240
[34]   Repeated-root constacyclic codes of prime power lengths over finite chain rings [J].
Dinh, Hai Q. ;
Nguyen, Hien D. T. ;
Sriboonchitta, Songsak ;
Vo, Thang M. .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 :22-41
[35]   Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index 3 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. ;
Tapia-Recillas, H. .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 :1-21
[36]   On Some Classes of Repeated-root Constacyclic Codes of Length a Power of 2 over Galois Rings [J].
Dinh, Hai Q. .
ADVANCES IN RING THEORY, 2010, :131-147
[37]   Duals of constacyclic codes over finite local Frobenius non-chain rings of length 4 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. ;
Tapia-Recillas, H. .
DISCRETE MATHEMATICS, 2018, 341 (04) :919-933
[38]   Constacyclic codes over finite local Frobenius non-chain rings of length 5 and nilpotency index 4 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (02) :67-91
[39]   On Constacyclic codes over Zpm [J].
Charkani, Mohammed Elhassani ;
Kabore, Joel .
2014 5TH WORKSHOP ON CODES, CRYPTOGRAPHY AND COMMUNICATION SYSTEMS (WCCCS' 14), 2014, :55-58
[40]   On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings [J].
San Ling ;
Patrick Solé .
Designs, Codes and Cryptography, 2003, 30 :113-130