Linear complementary pairs of codes over rings

被引:0
作者
Peng Hu
Xiusheng Liu
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Chain rings; LCP of codes; Constacylic codes; Generating polynomials; 94B05; 94B15; 94B60; 94B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we first prove a necessary and sufficient condition for a pairs of linear codes over finite rings to be linear complementary pairs (abbreviated to LCPs). In particular, a judging criterion of free LCP of codes over finite commutative rings is obtained. Using the criterion of free LCP of codes, we construct a maximum-distance-separable (MDS) LCP of codes over ring Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}. Then, all the possible LCP of codes over chain rings are determined. We also generalize the criterions for constacyclic and quasi-cyclic LCP of codes over finite fields to constacyclic and quasi-cyclic LCP of codes over chain rings. Finally, we give a characterization of LCP of codes over principal ideal rings. Under suitable conditions, we also obtain the judging criterion for a pairs of cyclic codes over principal ideal rings Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{k}$$\end{document} to be LCP, and illustrate a MDS LCP of cyclic codes over the principal ideal ring Z15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{15}$$\end{document}.
引用
收藏
页码:2495 / 2509
页数:14
相关论文
共 50 条
[21]   Self-Dual Codes Over Chain Rings [J].
Simon Eisenbarth ;
Gabriele Nebe .
Mathematics in Computer Science, 2020, 14 :443-456
[22]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[23]   Self-Dual Codes Over Chain Rings [J].
Eisenbarth, Simon ;
Nebe, Gabriele .
MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (02) :443-456
[24]   LCP of constacyclic codes over finite chain rings [J].
Thakral, Ridhima ;
Dutt, Sucheta ;
Sehmi, Ranjeet .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) :1989-2001
[25]   l-LIPs of codes over finite chain rings [J].
Liu, Xiusheng ;
Hu, Peng .
DISCRETE MATHEMATICS, 2022, 345 (12)
[26]   On the Structure of Cyclic and Negacyclic Codes over Finite Chain Rings [J].
Dinh, Hai Q. ;
Lopez-Permouth, Sergio R. ;
Szabo, Steve .
CODES OVER RINGS, 2009, 6 :22-+
[27]   ON SOME CLASSES OF CONSTACYCLIC CODES OVER POLYNOMIAL RESIDUE RINGS [J].
Dinh, Hai Q. ;
Nguyen, Hien D. T. .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (02) :175-191
[28]   New EAQEC codes from LCP of codes over finite non-chain rings [J].
Hu, Peng ;
Liu, Xiusheng .
QUANTUM INFORMATION PROCESSING, 2025, 24 (03)
[29]   Some Repeated-Root Constacyclic Codes Over Galois Rings [J].
Liu, Hongwei ;
Maouche, Youcef .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) :6247-6255
[30]   The dual of a constacyclic code, self dual, reversible constacyclic codes and constacyclic codes with complementary duals over finite local Frobenius non-chain rings with nilpotency index 3 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. ;
Sarmiento-Rosales, E. ;
Tapia-Recillas, H. ;
Villarreal, R. H. .
DISCRETE MATHEMATICS, 2019, 342 (08) :2283-2296