Linear complementary pairs of codes over rings

被引:0
作者
Peng Hu
Xiusheng Liu
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Chain rings; LCP of codes; Constacylic codes; Generating polynomials; 94B05; 94B15; 94B60; 94B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we first prove a necessary and sufficient condition for a pairs of linear codes over finite rings to be linear complementary pairs (abbreviated to LCPs). In particular, a judging criterion of free LCP of codes over finite commutative rings is obtained. Using the criterion of free LCP of codes, we construct a maximum-distance-separable (MDS) LCP of codes over ring Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}. Then, all the possible LCP of codes over chain rings are determined. We also generalize the criterions for constacyclic and quasi-cyclic LCP of codes over finite fields to constacyclic and quasi-cyclic LCP of codes over chain rings. Finally, we give a characterization of LCP of codes over principal ideal rings. Under suitable conditions, we also obtain the judging criterion for a pairs of cyclic codes over principal ideal rings Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{k}$$\end{document} to be LCP, and illustrate a MDS LCP of cyclic codes over the principal ideal ring Z15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{15}$$\end{document}.
引用
收藏
页码:2495 / 2509
页数:14
相关论文
共 50 条
  • [21] Cyclic and negacyclic codes over finite chain rings
    Dinh, HQ
    López-Permouth, SR
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1728 - 1744
  • [22] Self-Dual Codes Over Chain Rings
    Eisenbarth, Simon
    Nebe, Gabriele
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (02) : 443 - 456
  • [23] LCP of constacyclic codes over finite chain rings
    Thakral, Ridhima
    Dutt, Sucheta
    Sehmi, Ranjeet
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1989 - 2001
  • [24] On the Structure of Cyclic and Negacyclic Codes over Finite Chain Rings
    Dinh, Hai Q.
    Lopez-Permouth, Sergio R.
    Szabo, Steve
    CODES OVER RINGS, 2009, 6 : 22 - +
  • [25] l-LIPs of codes over finite chain rings
    Liu, Xiusheng
    Hu, Peng
    DISCRETE MATHEMATICS, 2022, 345 (12)
  • [26] ON SOME CLASSES OF CONSTACYCLIC CODES OVER POLYNOMIAL RESIDUE RINGS
    Dinh, Hai Q.
    Nguyen, Hien D. T.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (02) : 175 - 191
  • [27] New EAQEC codes from LCP of codes over finite non-chain rings
    Hu, Peng
    Liu, Xiusheng
    QUANTUM INFORMATION PROCESSING, 2025, 24 (03)
  • [28] Some Repeated-Root Constacyclic Codes Over Galois Rings
    Liu, Hongwei
    Maouche, Youcef
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6247 - 6255
  • [29] The dual of a constacyclic code, self dual, reversible constacyclic codes and constacyclic codes with complementary duals over finite local Frobenius non-chain rings with nilpotency index 3
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    Sarmiento-Rosales, E.
    Tapia-Recillas, H.
    Villarreal, R. H.
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2283 - 2296
  • [30] CYCLIC CODES OF LENGTH 2pn OVER FINITE CHAIN RINGS
    Silva, Anderson
    Milies, C. Polcino
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (02) : 233 - 245