Completely Monotone Solutions of the Mode-Coupling Theory for Mixtures

被引:0
作者
T. Franosch
Th. Voigtmann
机构
[1] Hahn–Meitner–Institut,Abteilung Theoretische Physik
[2] Technische Universität München,Physik
来源
Journal of Statistical Physics | 2002年 / 109卷
关键词
Glass transition; mode-coupling theory; Smoluchowski dynamics; completely monotone functions; Perron–Frobenius mappings;
D O I
暂无
中图分类号
学科分类号
摘要
We establish that a mode-coupling approximation for the dynamics of multi-component systems obeying Smoluchowski dynamics preserves a subtle yet fundamental property: the partial density correlation functions are, considered as matrices, completely monotone, i.e., they can exactly be written as superpositions of decaying exponentials only. This statement holds, no matter what further approximations are needed to calculate the theory's coupling parameters. The long-time limit of these functions fulfills a maximum property, and an iteration scheme for its numerical determination is given. We also show the existence of a unique solution to the equations of motion for which power series both for short times and small frequencies exist, the latter except at special points where ergodic-to-nonergodic transitions occur. These transitions are bifurcations that are proven to be of the cuspoid family.
引用
收藏
页码:237 / 259
页数:22
相关论文
共 35 条
[1]  
Götze W.(1995)undefined J. Math. Anal. Appl. 195 230-250
[2]  
Sjögren L.(2001)undefined Phys. Rev. E 64 041502-A45
[3]  
Williams S. R.(1999)undefined J. Phys.: Condens. Matter 11 A1-372
[4]  
van Megen W.(1996)undefined Phys. Rep. 272 215-5934
[5]  
Götze W.(1984)undefined J. Phys. C 17 5915-13
[6]  
Nägele G.(1993)undefined Phys. A 201 1-651
[7]  
Bengtzelius U.(2001)undefined Phys. Rev. Lett. 86 648-355
[8]  
Götze W.(1978)undefined J. London Math. Soc. (2) 17 345-75
[9]  
Sjölander A.(1975)undefined Russian Math. Surveys 30 1-7176
[10]  
Fuchs M.(1997)undefined Phys. Rev. E 55 7153-138