Large deviations and concentration properties for ∇ϕ interface models

被引:0
作者
Jean-Dominique Deuschel
Giambattista Giacomin
Dmitry Ioffe
机构
[1] Fachbereich Mathematik,
[2] TU-Berlin,undefined
[3] Strasse des 17 Juni 136,undefined
[4] 10623 Berlin,undefined
[5] Germany. e-mail: deuschel@math.tu-berlin.de,undefined
[6] Dipartimento di Matematica,undefined
[7] Università di Milano,undefined
[8] via Saldini 50,undefined
[9] 20133 Milano,undefined
[10] Italy. e-mail: giacomin@mat.unimi.it,undefined
[11] Faculty of Industrial Engineering,undefined
[12] Technion,undefined
[13] Haifa 32000,undefined
[14] Israel. e-mail: ieioffe@ie.technion.ac.il,undefined
来源
Probability Theory and Related Fields | 2000年 / 117卷
关键词
Gradient Field; Gibbs Measure; Random Environment; Large Deviation Principle; Relaxation Property;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the massless field with zero boundary conditions outside DN≡D∩ (ℤd/N) (N∈ℤ+), D a suitable subset of ℝd, i.e. the continuous spin Gibbs measure ℙN on ℝℤd/N with Hamiltonian given by H(ϕ) = ∑x,y:|x−y|=1V(ϕ(x) −ϕ(y)) and ϕ(x) = 0 for x∈DNC. The interaction V is taken to be strictly convex and with bounded second derivative. This is a standard effective model for a (d + 1)-dimensional interface: ϕ represents the height of the interface over the base DN. Due to the choice of scaling of the base, we scale the height with the same factor by setting ξN = ϕ/N.
引用
收藏
页码:49 / 111
页数:62
相关论文
共 50 条
[21]   Large deviations for nonlinear stochastic Schrodinger equation [J].
Fatheddin, Parisa ;
Qiu, Zhaoyang .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (03) :456-482
[22]   Large deviations of the current in stochastic collisional dynamics [J].
Lefevere, Raphael ;
Mariani, Mauro ;
Zambotti, Lorenzo .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
[23]   Large Deviations and Ergodicity for Spin Particle Systems [J].
Jinwen Chen .
Journal of Statistical Physics, 1998, 91 :369-393
[24]   Large deviations for longest runs in Markov chains [J].
Liu, Zhenxia ;
Zhu, Yurong .
JOURNAL OF APPLIED ANALYSIS, 2020, 26 (02) :309-314
[25]   Large Deviations of Continuous Regular Conditional Probabilities [J].
van Zuijlen, W. .
JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (02) :1058-1096
[26]   Large deviations for stochastic pantograph integrodifferential equation [J].
Ranjani, A. Siva ;
Suvinthra, M. ;
Balachandran, K. .
FILOMAT, 2023, 37 (20) :6751-6766
[27]   Large deviations and ergodicity for spin particle systems [J].
Chen, JW .
JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (1-2) :369-393
[28]   LARGE DEVIATIONS FOR THE LONGEST GAP IN POISSON PROCESSES [J].
Omwonylee, Joseph Okello .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) :146-156
[29]   Large Deviations for Equilibrium Measures and Selection of Subaction [J].
Mengue, Jairo K. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (01) :17-42
[30]   LARGE DEVIATIONS FOR THE CONTACT PROCESS IN RANDOM ENVIRONMENT [J].
Garet, Olivier ;
Marchand, Regine .
ANNALS OF PROBABILITY, 2014, 42 (04) :1438-1479