Theoretical and computational results of a wave equation with variable exponent and time-dependent nonlinear damping

被引:0
作者
Muhammad I. Mustafa
Salim A. Messaoudi
Mostafa Zahri
机构
[1] Research Group MASEP University of Sharjah,Department of Mathematics, College of Sciences
来源
Arabian Journal of Mathematics | 2021年 / 10卷
关键词
35B40; 74D99; 93D15; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following wave equation utt-Δu+α(t)utm(·)-2ut=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt}-\Delta u+\alpha (t)\left| u_{t}\right| ^{m(\cdot )-2}u_{t}=0$$\end{document} with a nonlinear damping having a variable exponent m(x) and a time-dependent coefficient α(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (t)$$\end{document}. We use the multiplier method to establish energy decay results depending on both m and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. We also give four numerical tests to illustrate our theoretical results using the conservative Lax–Wendroff method scheme.
引用
收藏
页码:443 / 458
页数:15
相关论文
共 47 条
  • [1] Afilal M(2020)On the exponential and polynomial stability for a linear Bresse system Math. Methods Appl. Sci. 43 2626-2645
  • [2] Guesmia A(2011)Wave equation with p(x, t)-Laplacian and damping term: existence and blow-up Differ. Equ. Appl. 3 503-525
  • [3] Soufyane A(2010)Blow-up of solutions to parabolic equations with nonstandard growth conditions J. Comput. Appl. Math. 234 2633-2645
  • [4] Zahri M(2005)Higher integrability for parabolic equations of p(x, t)-Laplacian type Adv. Differ. Equ. 10 1053-1080
  • [5] Antontsev S(2006)Energy decay of solutions of a wave equation of p-Laplacian type with a weakly nonlinear dissipation JIPM. J. Inequal. Pure Appl. Math. 7 8-446
  • [6] Antontsev S(2001)On the spaces J. Math. Anal. Appl. 263 424-8
  • [7] Shmarev S(2013) and Bound. Value Probl. 2013 1-308
  • [8] Antontsev S(1994)Existence of weak solutions for viscoelastic hyperbolic equations with variable exponents J. Differ. Equ. 109 295-519
  • [9] Zhikov V(2014)Existence of solutions of the wave equation with nonlinear damping and source terms C. R. Mec. 342 513-222
  • [10] Benaissa A(2020)Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy Zeitschrift fü r Analysis und ihre Anwendungen 39 185-266