QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.)

被引:0
|
作者
Rajni Devi
Sewa Ram
Veenti Rana
Vipin Kumar Malik
Veena Pande
Gyanendra Pratap Singh
机构
[1] ICAR-Indian Institute of Wheat and Barley Research,
[2] Kumaun University,undefined
来源
Euphytica | 2019年 / 215卷
关键词
Salt tolerance; RILs; QTL; SSRs; Wheat;
D O I
暂无
中图分类号
学科分类号
摘要
Soil salinity is major constraint for wheat production globally and breeding wheat cultivars for salt tolerance by conventional means is difficult. Therefore, understanding molecular components associated with salt tolerance is needed to facilitate breeding for salt tolerance in wheat. In this investigation, quantitative trait loci (QTL/s) associated with salt tolerance were identified using recombinant inbred lines (RILs) developed from a cross between Kharchia 65 (KH 65) and HD 2009 cultivars. Parents and RILs were evaluated under controlled and sodic stress conditions for 11 morpho-physiological and yield determining traits for two consecutive crop cycles. Simple sequence repeat (SSR) markers were employed for mapping studies. Using composite interval mapping approach, 11 QTLs on 6 chromosomal regions (1B, 2D, 5D, 6A, 6B and 7D) for 7 different traits were identified explaining proportion of the phenotypic variance (PVEs) (2.5–12.8%) under control condition. Three of the QTLs (QCph.iiwbr-2D.1, QCle.iiwbr-6A and QCle.iiwbr-6B) were most consistent in all the environments and explained PVEs (5.1–12.8%) under control condition. Twenty-five QTLs were detected on 7 chromosomal regions (1A, 1B, 2D, 4D, 5D, 6A and 7D) for 10 different traits explaining PVEs (2.6–15.1%) under salt stress. Six of the QTLs namely QSNa+.iiwbr-1B, QSK+.iiwbr-2D, QStn.iiwbr-4D, QSph.iiwbr-2D.1, QSph.iiwbr-6A and QSdth.iiwbr-2D were consistently reproducible in all the environments and explained PVEs ranging from 2.6 to 15.1%. SSR markers namely gwm 261, wmc 112, and cfd 84 were tightly linked with QTLs for K+ content; DTH and DTA; and TN and NE, respectively. Several QTLs contributing towards salt tolerance were present on 2D chromosome. Most of the QTLs linked with salt tolerant traits were inherited from KH 65 signifying the presence of several genes associated with salt tolerance in this cultivar. The information is very useful in marker assisted breeding to enhance salt tolerance in wheat.
引用
收藏
相关论文
共 50 条
  • [31] HERITABILITY OF WATERLOGGING TOLERANCE IN WHEAT (Triticum aestivum L.)
    Unay, Aydin
    Simsek, Serap
    TURKISH JOURNAL OF FIELD CROPS, 2020, 25 (02) : 156 - 160
  • [32] QTL mapping for early ground cover in wheat (Triticum aestivum L.) under drought stress
    Mondal, Biswajit
    Singh, Anupam
    Yadav, Aneeta
    Tomar, Ram Sewak Singh
    Vinod
    Singh, Gyanendra Pratap
    Prabhu, Kumble Vinod
    CURRENT SCIENCE, 2017, 112 (06): : 1266 - 1271
  • [33] Identification and expression analysis of genomic regions associated with the traits contributing to lodging tolerance in wheat (Triticum aestivum L.)
    Duhan, Nikita
    Panigrahi, Sourav
    Pal, Neeraj
    Saini, Dinesh Kumar
    Balyan, Priyanka
    Singh, Yogita
    Mir, Reyazul Rouf
    Singh, Krishna Pal
    Kumar, Sundip
    Dhankher, Om Parkash
    Kumar, Upendra
    EUROPEAN JOURNAL OF AGRONOMY, 2024, 154
  • [34] Use of IR thermography in screening wheat (Triticum aestivum L.) cultivars for salt tolerance
    Esmaeili, Alireza
    Poustini, Kazem
    Ahmadi, Hojat
    Abbasi, Alireza
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2017, 63 (02) : 161 - 170
  • [35] QTL analysis for nitrogen use efficiency in wheat (Triticum aestivum L.)
    Singh, Rakhi
    Saripalli, Gautam
    Kumar, Anuj
    Gautam, Tinku
    Singh, Susheel Kumar
    Gahlaut, Vijay
    Kumar, Sachin
    Meher, Prabina Kumar
    Mishra, Rajendra Prasad
    Singh, Vinod Kumar
    Sharma, Pradeep Kumar
    Balyan, Harindra Singh
    Gupta, Pushpendra Kumar
    EUPHYTICA, 2023, 219 (01)
  • [36] QTL analysis for nitrogen use efficiency in wheat (Triticum aestivum L.)
    Rakhi Singh
    Gautam Saripalli
    Anuj Kumar
    Tinku Gautam
    Susheel Kumar Singh
    Vijay Gahlaut
    Sachin Kumar
    Prabina Kumar Meher
    Rajendra Prasad Mishra
    Vinod Kumar Singh
    Pradeep Kumar Sharma
    Harindra Singh Balyan
    Pushpendra Kumar Gupta
    Euphytica, 2023, 219
  • [37] Genetic analysis of salt tolerance in spring wheat (Triticum aestivum L)
    Ahsan, M
    Wright, D
    Virk, DS
    CEREAL RESEARCH COMMUNICATIONS, 1996, 24 (03) : 353 - 360
  • [38] SCREENING OF SPRING WHEAT (Triticum aestivum L.) GENOTYPES FOR DROUGHT TOLERANCE ON THE BASIS OF SEEDLING TRAITS
    Ahmad, Irshad
    Khaliq, Ihsan
    Khanand, Abdus Salam
    Farooq, Muhammad
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 51 (02): : 377 - 382
  • [39] Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.) – A physiological and genetic approach
    M. St. Burgos
    M.M. Messmer
    P. Stamp
    J.E. Schmid
    Euphytica, 2001, 122 : 287 - 295
  • [40] Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.) -: A physiological and genetic approach
    St Burgos, M
    Messmer, MM
    Stamp, P
    Schmid, JE
    EUPHYTICA, 2001, 122 (02) : 287 - 295