On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation

被引:0
|
作者
Graham G. Sanborn
Ahmed A. Shabana
机构
[1] University of Illinois at Chicago,Department of Mechanical Engineering
来源
Multibody System Dynamics | 2009年 / 22卷
关键词
Computer aided design; Computer aided analysis; B-splines; NURBS; Absolute nodal coordinate formulation; Isogeometric analysis;
D O I
暂无
中图分类号
学科分类号
摘要
For almost a decade, the finite element absolute nodal coordinate formulation (ANCF) has been used for both geometry and finite element representations. Because of the ANCF isoparametric property in the cases of beams, plates and shells, ANCF finite elements lend themselves easily to the geometric description of curves and surfaces, as demonstrated in the literature. The ANCF finite elements, therefore, are ideal for what is called isogeometric analysis that aims at the integration ofcomputer aided designandanalysis (ICADA), which involves the integration of what is now split into the separate fields of computer aided design (CAD) and computer aided analysis (CAA). The purpose of this investigation is to establish the relationship between the B-spline and NURBS, which are widely used in the geometric modeling, and the ANCF finite elements. It is shown in this study that by using the ANCF finite elements, one can in a straightforward manner obtain the control point representation required for the Bezier, B-spline and NURBS geometry. To this end, a coordinate transformation is used to write the ANCF gradient vectors in terms of control points. Unifying the CAD and CAA will require the use of such coordinate transformations and their inverses in order to transform control points to position vector gradients which are required for the formulation of the element transformations in the case of discontinuities as well as the formulation of the strain measures and the stress forces based on general continuum mechanics theory. In particular, fully parameterized ANCF finite elements can be very powerful in describing curve, surface, and volume geometry, and they can be effectively used to describe discontinuities while maintaining the many ANCF desirable features that include a constant mass matrix, zero Coriolis and centrifugal forces, no restriction on the amount of rotation or deformation within the finite element, ability for straightforward implementation of general constitutive equations, and ability to capture coupled deformation modes that cannot be captured using existing finite element beam, plate and shell formulations. Because of the relationship between the ANCF finite elements and the B-splines, the development of a rational absolute nodal coordinate formulation (RANCF) is currently being explored. Furthermore, the relationship between the ANCF finite elements and B-splines and NURBS demonstrates that the use of B-splines and NURBS in the analysis will eventually lead to the same fundamental issues that have been already researched in the literature on the ANCF finite elements.
引用
收藏
页码:181 / 197
页数:16
相关论文
共 50 条
  • [21] Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements
    Ahmed A. Shabana
    Luis G. Maqueda
    Multibody System Dynamics, 2008, 20 : 239 - 249
  • [22] A Variable-Length Rational Finite Element Based on the Absolute Nodal Coordinate Formulation
    Ding, Zhishen
    Ouyang, Bin
    MACHINES, 2022, 10 (03)
  • [23] Modeling Method and Application of Rational Finite Element Based on Absolute Nodal Coordinate Formulation
    Chao Ma
    Cheng Wei
    Jing Sun
    Bin Liu
    Acta Mechanica Solida Sinica, 2018, 31 : 207 - 228
  • [24] Modeling Method and Application of Rational Finite Element Based on Absolute Nodal Coordinate Formulation
    Ma, Chao
    Wei, Cheng
    Sun, Jing
    Liu, Bin
    ACTA MECHANICA SOLIDA SINICA, 2018, 31 (02) : 207 - 228
  • [25] Panel flutter analysis of plate element based on the absolute nodal coordinate formulation
    Abbas, Laith K.
    Rui, Xiaoting
    Marzocca, P.
    MULTIBODY SYSTEM DYNAMICS, 2012, 27 (02) : 135 - 152
  • [26] Gradient Deficient Curved Beam Element Using the Absolute Nodal Coordinate Formulation
    Sugiyama, Hiroyuki
    Koyama, Hirohisa
    Yamashita, Hiroki
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2010, 5 (02): : 1 - 8
  • [27] Panel flutter analysis of plate element based on the absolute nodal coordinate formulation
    Laith K. Abbas
    Xiaoting Rui
    P. Marzocca
    Multibody System Dynamics, 2012, 27 : 135 - 152
  • [28] The Absolute Nodal Coordinate Formulation
    Gerstmayr, Johannes
    Humer, Alexander
    Gruber, Peter
    Nachbagauer, Karin
    STRUCTURE-PRESERVING INTEGRATORS IN NONLINEAR STRUCTURAL DYNAMICS AND FLEXIBLE MULTIBODY DYNAMICS, 2016, 565 : 159 - 200
  • [29] A Universal Quadrilateral Shell Element for the Absolute Nodal Coordinate Formulation
    Zhang, Binghua
    Fan, Wei
    Ren, Hui
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (10):
  • [30] A piecewise beam element based on absolute nodal coordinate formulation
    Yu, Zuqing
    Lan, Peng
    Lu, Nianli
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 1 - 15