Cutaneous squamous cell carcinoma characterized by MALDI mass spectrometry imaging in combination with machine learning

被引:2
|
作者
Brorsen, Lauritz F. [1 ,2 ]
McKenzie, James S. [3 ]
Tullin, Mette F. [2 ]
Bendtsen, Katja M. S. [4 ]
Pinto, Fernanda E. [1 ]
Jensen, Henrik E. [4 ]
Haedersdal, Merete [1 ,5 ]
Takats, Zoltan [3 ]
Janfelt, Christian [2 ]
Lerche, Catharina M. [1 ,2 ]
机构
[1] Copenhagen Univ Hosp Bispebjerg & Frederiksberg, Dept Dermatol, Nielsine Nielsens Vej 9, DK-2400 Copenhagen, Denmark
[2] Univ Copenhagen, Dept Pharm, Copenhagen, Denmark
[3] Imperial Coll London, Dept Digest Metab & Reprod, London, England
[4] Univ Copenhagen, Dept Vet & Anim Sci, Copenhagen, Denmark
[5] Univ Copenhagen, Dept Clin Med, Copenhagen, Denmark
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
CANCER; DIAGNOSIS;
D O I
10.1038/s41598-024-62023-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cutaneous squamous cell carcinoma (SCC) is an increasingly prevalent global health concern. Current diagnostic and surgical methods are reliable, but they require considerable resources and do not provide metabolomic insight. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) enables detailed, spatially resolved metabolomic analysis of tissue samples. Integrated with machine learning, MALDI-MSI could yield detailed information pertaining to the metabolic alterations characteristic for SCC. These insights have the potential to enhance SCC diagnosis and therapy, improving patient outcomes while tackling the growing disease burden. This study employs MALDI-MSI data, labelled according to histology, to train a supervised machine learning model (logistic regression) for the recognition and delineation of SCC. The model, based on data acquired from discrete tumor sections (n=25) from a mouse model of SCC, achieved a predictive accuracy of 92.3% during cross-validation on the labelled data. A pathologist unacquainted with the dataset and tasked with evaluating the predictive power of the model in the unlabelled regions, agreed with the model prediction for over 99% of the tissue areas. These findings highlight the potential value of integrating MALDI-MSI with machine learning to characterize and delineate SCC, suggesting a promising direction for the advancement of mass spectrometry techniques in the clinical diagnosis of SCC and related keratinocyte carcinomas.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Murine cutaneous leishmaniasis investigated by MALDI mass spectrometry imaging
    Negrao, Fernanda
    Rocha, Daniele F. de O.
    Jaeeger, Caroline F.
    Rocha, Francisca J. S.
    Eberlin, Marcos N.
    Giorgio, Selma
    MOLECULAR BIOSYSTEMS, 2017, 13 (10) : 2036 - 2043
  • [2] MALDI imaging mass spectrometry profiling of proteins and lipids in clear cell renal cell carcinoma
    Jones, Elizabeth Ellen
    Powers, Thomas W.
    Neely, Benjamin A.
    Cazares, Lisa H.
    Troyer, Dean A.
    Parker, Alexander S.
    Drake, Richard R.
    PROTEOMICS, 2014, 14 (7-8) : 924 - 935
  • [3] MALDI Imaging Mass Spectrometry Differentiates Basal Cell Carcinoma from Trichoblastoma and Trichoepithelioma
    Scholl, Ashley Rose
    Moore, Jessica
    Patterson, Heath
    Nicholson, Sarah
    Norris, Jeremy
    Robbins, Jason
    Al-Rohil, Rami
    LABORATORY INVESTIGATION, 2022, 102 (SUPPL 1) : 357 - 358
  • [4] MALDI Imaging Mass Spectrometry Differentiates Basal Cell Carcinoma from Trichoblastoma and Trichoepithelioma
    Scholl, Ashley Rose
    Moore, Jessica
    Patterson, Heath
    Nicholson, Sarah
    Norris, Jeremy
    Robbins, Jason
    Al-Rohil, Rami
    MODERN PATHOLOGY, 2022, 35 (SUPPL 2) : 357 - 358
  • [5] MALDI Mass Spectrometry Imaging of Neuronal Cell Cultures
    Zimmerman, Tyler A.
    Rubakhin, Stanislav S.
    Sweedler, Jonathan V.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2011, 22 (05) : 828 - 836
  • [6] Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging
    Mittal, Paul
    Condina, Mark R.
    Klingler-Hoffmann, Manuela
    Kaur, Gurjeet
    Oehler, Martin K.
    Sieber, Oliver M.
    Palmieri, Michelle
    Kommoss, Stefan
    Brucker, Sara
    McDonnell, Mark D.
    Hoffmann, Peter
    CANCERS, 2021, 13 (21)
  • [7] A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging
    Sarretto, Tassiani
    Gardner, Wil
    Brungs, Daniel
    Napaki, Sarbar
    Pigram, Paul J.
    Ellis, Shane R.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2024, 35 (03) : 466 - 475
  • [8] MALDI Imaging Mass Spectrometry
    Franck, Julien
    Arafah, Karim
    Elayed, Mohamed
    Bonnel, David
    Vergara, Daniele
    Jacquet, Amelie
    Vinatier, Denis
    Wisztorski, Maxence
    Day, Robert
    Fournier, Isabelle
    Salzet, Michel
    MOLECULAR & CELLULAR PROTEOMICS, 2009, 8 (09) : 2023 - 2033
  • [9] Oral Squamous Cell Carcinoma Lipid Evaluation in Gingiva Tissue Stored in TRIzol via Shotgun Lipidomics and MALDI Mass Spectrometry Imaging
    Bernardo, Ricardo Alves
    de Oliveira Junior, Charles Ivo
    Roque, Jussara Valente
    Costa, Nadia do Lago
    Roriz, Virgilio Moreira
    Sorgi, Carlos Arterio
    Janfelt, Christian
    Vaz, Boniek Gontijo
    Chaves, Andrea Rodrigues
    JOURNAL OF PROTEOME RESEARCH, 2023, 23 (08) : 2750 - 2761
  • [10] Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning
    Brorsen, Lauritz F.
    Mckenzie, James S.
    Pinto, Fernanda E.
    Glud, Martin
    Hansen, Harald S.
    Haedersdal, Merete
    Takats, Zoltan
    Janfelt, Christian
    Lerche, Catharina M.
    EXPERIMENTAL DERMATOLOGY, 2024, 33 (07)