On High-Dimensional Acyclic Tournaments

被引:0
作者
Nati Linial
Avraham Morgenstern
机构
[1] The Hebrew University of Jerusalem,School of Computer Science and Engineering
[2] The Hebrew University of Jerusalem,Einstein Institute of Mathematics
来源
Discrete & Computational Geometry | 2013年 / 50卷
关键词
Tournament; High-dimensional; Acyclic; Enumeration; Hyper-plane arrangements;
D O I
暂无
中图分类号
学科分类号
摘要
We study a high-dimensional analog for the notion of an acyclic (aka transitive) tournament. We give upper and lower bounds on the number of d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-dimensional n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-vertex acyclic tournaments. In addition, we prove that every n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-vertex d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-dimensional tournament contains an acyclic subtournament of Ω(log1/dn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\log ^{1/d}n)$$\end{document} vertices and the bound is tight. This statement for tournaments (i.e., the case d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}) is a well-known fact. We indicate a connection between acyclic high-dimensional tournaments and Ramsey numbers of hypergraphs. We investigate as well the inter-relations among various other notions of acyclicity in high-dimensional tournaments. These include combinatorial, geometric and topological concepts.
引用
收藏
页码:1085 / 1100
页数:15
相关论文
共 13 条
[1]  
Alon N(2001)Ramsey-type theorems with forbidden subgraphs Combinatorica 21 155-170
[2]  
Pach J(1989)Ramsey-type theorems Discret. Appl. Math. 25 37-52
[3]  
Solymosi J(1964)On the representation of directed graphs as unions of orderings Publ. Math. Inst. Hung. Acad. Sci. 9 125-132
[4]  
Erdős P(1991)The complexity of point configurations Discret. Appl. Math. 31 167-180
[5]  
Hajnal A(1983)On the asymptotic number of tournament score sequences J. Comb. Theory Ser. A 35 208-230
[6]  
Erdős P(2010)Directed simplices in higher order tournaments Mathematika 56 173-181
[7]  
Moser L(undefined)undefined undefined undefined undefined-undefined
[8]  
Goodman J(undefined)undefined undefined undefined undefined-undefined
[9]  
Pollack R(undefined)undefined undefined undefined undefined-undefined
[10]  
Kleitman D(undefined)undefined undefined undefined undefined-undefined