Cohomology of line bundles on Schubert varieties-I

被引:0
作者
Balaji V. [1 ]
Kannan S.S. [1 ]
Subrahmanyam K.V. [1 ]
机构
[1] Chennai Mathematical Institute, Chennai-600017, 92, G. N. Chetty Road
关键词
Line Bundle; Schubert Variety; Combinatorial Dictionary;
D O I
10.1007/s00031-004-7007-1
中图分类号
学科分类号
摘要
The aim of this paper is to begin a study of the cohomology modules H i (X (w), ℒλ) for non-dominant weights λ on Schubert varieties X(w) in G/B. The aim is to set up a combinatorial dictionary for describing the cohomology modules and give criteria for their vanishing. Here ℒλ denotes the line bundle on X(w) corresponding to the 1-dimensional representation of B given by the character λ.
引用
收藏
页码:105 / 131
页数:26
相关论文
共 11 条
  • [1] Bott R., Homogeneous vector bundles, Annals of Math., Ser. 2, 66, pp. 203-248, (1957)
  • [2] Dabrowski R., A simple proof of a necessary and sufficient condition for the existence of nontrivial global sections of a line bundle on a Schubert variety. Kazhdan-Lusztig theory and applications, Contemp. Math., 139, pp. 113-120, (1992)
  • [3] Demazure M., A very simple proof of Bott's theorem, Invent. Math., 33, pp. 271-272, (1976)
  • [4] Humphreys J.E., Introduction to Lie algebras and representation theory, GTM, 9, (1970)
  • [5] Jantzen J.C., Representations of algebraic groups, Pure and Appl. Math., (1987)
  • [6] Joseph A., On the Demazure character formula, Ann. Sci. Ecole Norm. Super., 18, pp. 389-419, (1985)
  • [7] Senthamarai Kannan S., Cohomology of Line Bundles on Schubert Varieties-II (the Infinite Dimensional Case), (2003)
  • [8] Li S.-P., Moody R.V., Nicolescu M., Patera J., Verma bases for representations of classical simple Lie algebras, J. Math. Phys., 27, 3, pp. 668-677, (1986)
  • [9] Paramasamy K., Cohomology of Line Bundles on Schubert Varieties, (2004)
  • [10] Polo P., Variétés de Schubert et excellentes filtration, Astérisque, 173-174, pp. 281-311, (1989)