共 10 条
- [1] Application of tan(ϕ(ξ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\phi (\xi )/2)$$\end{document}-expansion method for the time-fractional Kuramoto–Sivashinsky equation Optical and Quantum Electronics, 2017, 49 (8)
- [2] On the exact solutions of nonlinear evolution equations by the improved tan(φ/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\varphi /2)$$\end{document}-expansion method Pramana, 2020, 94 (1)
- [3] Application of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(G^{\prime}$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G)$\end{document}-expansion method for the Burgers, Burgers–Huxley and modified Burgers–KdV equations Pramana, 2011, 76 (6) : 831 - 842
- [4] Pure cubic optical solitons with improved tan(φ/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tan(\varphi /2)$$\end{document}-expansion method Optical and Quantum Electronics, 2021, 53 (10)
- [5] Remarks on L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document} decay of solutions for the third-grade non-Newtonian fluid flows in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{3}$\end{document} Boundary Value Problems, 2017 (1)
- [6] Lack of controllability of the viscous Burgers equation: part I—the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{L}^\infty $$\end{document} setting Journal of Evolution Equations, 2022, 22 (3)
- [7] Traveling wave solutions for density-dependent conformable fractional diffusion–reaction equation by the first integral method and the improved tan12φξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{tan}\left( {{\mathbf{\frac{1}{2}}}{\boldsymbol{\varphi }}\left({\boldsymbol{\upxi}} \right)} \right)$$\end{document}-expansion method Optical and Quantum Electronics, 2018, 50 (3)
- [8] New (3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{+}$$\end{document}1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions Nonlinear Dynamics, 2017, 87 (4) : 2457 - 2461
- [9] Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of (G′G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{G'}{G})$$\end{document} expansion method Optical and Quantum Electronics, 2021, 53 (9)
- [10] Lax Pair, Improved Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varGamma $\end{document}-Riccati Bäcklund Transformation and Soliton-Like Solutions to Variable-Coefficient Higher-Order Nonlinear Schrödinger Equation in Optical Fibers Acta Applicandae Mathematicae, 2019, 164 (1) : 185 - 192