Maximal Solvable Extension of Naturally Graded Filiform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n $\end{document}-Lie Algebras

被引:0
作者
K. K. Abdurasulov
R. K. Gaybullaev
B. A. Omirov
A. Kh. Khudoyberdiyev
机构
[1] Romanovskii Institute of Mathematics,
[2] National University of Uzbekistan,undefined
关键词
-Lie algebra; Filippov algebra; nilpotent ; -algebra; hyponilpotent ideal of an ; -algebra; solvable ; -algebra; derivation; characteristic sequence; graded algebra; 512.554;
D O I
10.1134/S0037446622010013
中图分类号
学科分类号
摘要
We study naturally graded filiform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n $\end{document}-Lie algebras. Among these algebras, we distinguish some algebra with the simplest structure that is an analog of the model filiform Lie algebra. We describe the derivations of the algebra and obtain the classification of solvable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n $\end{document}-Lie algebras whose maximal hyponilpotent ideal coincides with the distinguished naturally graded filiform algebra. Furthermore, we show that these solvable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n $\end{document}-Lie algebras possess outer derivations.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 22 条
[1]  
Nambu Y(1973)Generalized Hamiltonian dynamics Phys. Rev. 7 2405-2412
[2]  
Takhtajan L(1994)On foundation of the generalized Nambu mechanics Commun. Math. Phys. 160 295-315
[3]  
Filippov VT(1985)-Lie algebras Sib. Math. J. 26 126-140
[4]  
Bai R(2009)3-Lie algebras with an ideal Linear Algebra Appl. 431 673-700
[5]  
Shen C(2010)Solvable 3-Lie algebras with a maximal hypo-nilpotent ideal  Electron. J. Linear Algebra 21 43-62
[6]  
Zhang Y(1955)A note on automorphisms and derivations of Lie algebras Proc. Amer. Math. Soc. 6 281-383
[7]  
Bai R(1992)Le rang du systeme lineaire des racines d’une algebre de lie rigide resoluble complexe Comm. Algebra 20 875-887
[8]  
Shen C(1972)Cohomology theorems for Borel-like solvable Lie algebras in arbitrary characteristic Canad. J. Math. 24 1019-1026
[9]  
Zhang Y(2006)Solvable Lie algebras with naturally graded nilradicals and their invariants J. Phys. A: Math. Gen. 39 1339-1355
[10]  
Jacobson N(2011)Classification of Lie algebras with naturally graded quasi-filiform nilradicals J. Geom. Phys. 61 2168-2186