On Isentropic Approximations for Compressible Euler Equations

被引:0
|
作者
Junxiong Jia
Ronghua Pan
机构
[1] Xi’an Jiaotong University,Department of Mathematics
[2] Georgia Institute of Technology,Department of Mathematics
来源
Journal of Scientific Computing | 2015年 / 64卷
关键词
Compressible Euler equation; Isentropic approximation ; Critical regularity; Besov spaces; 35L65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first generalize the classical results on Cauchy problem for positive symmetric quasilinear systems to more general Besov space. Through this generalization, we obtain the local well-posedness with initial data in the space B2,1d2+1(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\frac{d}{2}+1}_{2,1}(\mathbb {R}^d)$$\end{document} which has critical regularity index. We then apply these results to give an explicit characterization on the isentropic approximation for full compressible Euler equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. This characterization tells us that isentropic compressible Euler equations is a reasonable approximation to Non-isentropic compressible Euler equations in the regime of classical solutions. The failure of such characterization was illustrated when singularities occur in the solutions.
引用
收藏
页码:745 / 760
页数:15
相关论文
共 50 条