The aim of this paper is to study viscosity solutions to the following terminal value problem on [0, t] × E:
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\left\{ {\begin{array}{*{20}l}
{\frac{{\partial u}}
{{\partial t}}(\tau ,x) + [A(\tau )u(\tau )](x) - V(\tau ,x)u(\tau ,x) = 0} \hfill \\
{u(t,x) = f(x),} \hfill \\
\end{array} } \right.
$$
\end{document} where E is a locally compact second countable Hausdorff topological space equipped with a reference measure m, f ∈ L∞(m), and V satisfies a Kato type condition. It is assumed that a transition probability density p is given, and the family of operators A(τ) is defined by
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
A(\tau )h(x) = \mathop {\lim }\limits_{^{^{\epsilon \to 0 + } } } \frac{{Y(\tau + \epsilon ,\tau )h(x) - h(x)}}
{\epsilon },
$$
\end{document} where Y denotes the free backward propagator associated with p. It is shown in the paper that under some restrictions on p, V , τ0 ∈ [0,t), and x0 ∈ E, the backward Feynman-Kac propagator YV associated with p and V generates a viscosity solution to the terminal value problem above at the point (τ0, x0). Similar result holds in the case where the function V is replaced by a time-dependent family μ of Borel measures on E.