On the two-dimensional hyperbolic stochastic sine-Gordon equation

被引:0
作者
Tadahiro Oh
Tristan Robert
Philippe Sosoe
Yuzhao Wang
机构
[1] The University of Edinburgh,School of Mathematics
[2] The Maxwell Institute for the Mathematical Sciences,Fakultät für Mathematik
[3] Universität Bielefeld,Department of Mathematics
[4] Cornell University,School of Mathematics
[5] University of Birmingham,undefined
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2021年 / 9卷
关键词
Stochastic sine-Gordon equation; Sine-Gordon equation; Renormalization; White noise; Gaussian multiplicative chaos; 35L71; 60H15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the two-dimensional stochastic sine-Gordon equation (SSG) in the hyperbolic setting. In particular, by introducing a suitable time-dependent renormalization for the relevant imaginary Gaussian multiplicative chaos, we prove local well-posedness of SSG for any value of a parameter β2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta ^2 > 0$$\end{document} in the nonlinearity. This exhibits sharp contrast with the parabolic case studied by Hairer and Shen (Commun Math Phys 341(3):933–989, 2016) and Chandra et al. (The dynamical sine-Gordon model in the full subcritical regime, arXiv:1808.02594 [math.PR], 2018), where the parameter is restricted to the subcritical range: 0<β2<8π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \beta ^2 < 8 \pi $$\end{document}. We also present a triviality result for the unrenormalized SSG.
引用
收藏
页码:1 / 32
页数:31
相关论文
共 53 条
[1]  
Albeverio S(1996)Trivial solutions for a nonlinear two-space-dimensional wave equation perturbed by space-time white noise Stochastics 56 127-160
[2]  
Haba Z(2001)A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise Probab. Theory Relat. Fields 121 319-366
[3]  
Russo F(1961)Theory of Bessel potentials. I Ann. Inst. Fourier (Grenoble) 11 385-475
[4]  
Albeverio S(1971)Theory and applications of the sine-Gordon equation Rivista del Nuovo Cimento 1 227-267
[5]  
Haba Z(2013)The Sobolev inequality on the torus revisited Publ. Math. Debrecen 83 359-374
[6]  
Russo F(1994)Periodic nonlinear Schrödinger equation and invariant measures Commun. Math. Phys. 166 1-26
[7]  
Aronszajn N(1996)Invariant measures for the 2D-defocusing nonlinear Schrödinger equation Commun. Math. Phys. 176 421-445
[8]  
Smith K(1991)Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation J. Funct. Anal. 100 87-109
[9]  
Barone A(2003)Strong solutions to the stochastic quantization equations Ann. Probab. 31 1900-1916
[10]  
Esposito F(1976)Classical and quantum statistical mechanics in one and two dimensions: two-component Yukawa- and Coulomb systems Commun. Math. Phys. 47 233-268