On some interior-point algorithms for nonconvex quadratic optimization

被引:0
作者
Paul Tseng
Yinyu Ye
机构
[1] Department of Mathematics,
[2] University of Washington,undefined
[3] Seattle,undefined
[4] Washington 98195,undefined
[5] USA,undefined
[6] e-mail: tseng@math.washington.edu,undefined
[7] Department of Management Science,undefined
[8] University of Iowa,undefined
[9] Iowa City,undefined
[10] Iowa 52242,undefined
[11] USA,undefined
[12] e-mail: yinyu-ye@uiowa.edu,undefined
来源
Mathematical Programming | 2002年 / 93卷
关键词
Local Minimum; Quadratic Optimization; Nonconvex Optimization; Nonconvex Quadratic Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
 Recently, interior-point algorithms have been applied to nonlinear and nonconvex optimization. Most of these algorithms are either primal-dual path-following or affine-scaling in nature, and some of them are conjectured to converge to a local minimum. We give several examples to show that this may be untrue and we suggest some strategies for overcoming this difficulty.
引用
收藏
页码:217 / 225
页数:8
相关论文
共 50 条
  • [31] Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization
    Vaithilingam Jeyakumar
    Nguyen Quang Huy
    Guoyin Li
    Optimization and Engineering, 2009, 10 : 491 - 503
  • [32] Initialization of the difference of convex functions optimization algorithm for nonconvex quadratic problems
    Achour, Saadi
    Rahmoune, Abdelaziz
    Ouchenane, Djamel
    Alharbi, Asma
    Boulaaras, Salah
    FILOMAT, 2024, 38 (03) : 1069 - 1083
  • [33] A nonconvex quadratic optimization approach to the maximum edge weight clique problem
    Seyedmohammadhossein Hosseinian
    Dalila B. M. M. Fontes
    Sergiy Butenko
    Journal of Global Optimization, 2018, 72 : 219 - 240
  • [34] A nonconvex quadratic optimization approach to the maximum edge weight clique problem
    Hosseinian, Seyedmohammadhossein
    Fontes, Dalila B. M. M.
    Butenko, Sergiy
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (02) : 219 - 240
  • [35] SOLVING QUADRATIC EQUATIONS VIA AMPLITUDE-BASED NONCONVEX OPTIMIZATION
    Monardo, Vincent
    Li, Yuanxin
    Chi, Yuejie
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5526 - 5530
  • [36] Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization
    Jeyakumar, Vaithilingam
    Huy, Nguyen Quang
    Li, Guoyin
    OPTIMIZATION AND ENGINEERING, 2009, 10 (04) : 491 - 503
  • [37] Distributed Zero-Order Algorithms for Nonconvex Multiagent Optimization
    Tang, Yujie
    Zhang, Junshan
    Li, Na
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (01): : 269 - 281
  • [38] Randomized block-coordinate adaptive algorithms for nonconvex optimization problems
    Zhou, Yangfan
    Huang, Kaizhu
    Li, Jiang
    Cheng, Cheng
    Wang, Xuguang
    Hussian, Amir
    Liu, Xin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [39] A Flexible Framework for Cubic Regularization Algorithms for Nonconvex Optimization in Function Space
    Schiela, Anton
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (01) : 85 - 118
  • [40] Proximal Linearized Iteratively Reweighted Algorithms for Nonconvex and Nonsmooth Optimization Problem
    Yeo, Juyeb
    Kang, Myeongmin
    AXIOMS, 2022, 11 (05)