On some interior-point algorithms for nonconvex quadratic optimization

被引:0
作者
Paul Tseng
Yinyu Ye
机构
[1] Department of Mathematics,
[2] University of Washington,undefined
[3] Seattle,undefined
[4] Washington 98195,undefined
[5] USA,undefined
[6] e-mail: tseng@math.washington.edu,undefined
[7] Department of Management Science,undefined
[8] University of Iowa,undefined
[9] Iowa City,undefined
[10] Iowa 52242,undefined
[11] USA,undefined
[12] e-mail: yinyu-ye@uiowa.edu,undefined
来源
Mathematical Programming | 2002年 / 93卷
关键词
Local Minimum; Quadratic Optimization; Nonconvex Optimization; Nonconvex Quadratic Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
 Recently, interior-point algorithms have been applied to nonlinear and nonconvex optimization. Most of these algorithms are either primal-dual path-following or affine-scaling in nature, and some of them are conjectured to converge to a local minimum. We give several examples to show that this may be untrue and we suggest some strategies for overcoming this difficulty.
引用
收藏
页码:217 / 225
页数:8
相关论文
共 50 条
  • [21] Proximal point methods and nonconvex optimization
    Kaplan, A
    Tichatschke, R
    JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) : 389 - 406
  • [22] Proximal Point Methods and Nonconvex Optimization
    A. Kaplan
    R. Tichatschke
    Journal of Global Optimization, 1998, 13 : 389 - 406
  • [23] A SOLVER FOR NONCONVEX BOUND-CONSTRAINED QUADRATIC OPTIMIZATION
    Mohy-ud-Din, Hassan
    Robinson, Daniel P.
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (04) : 2385 - 2407
  • [24] An augmented Lagrangian interior-point method using directions of negative curvature
    Moguerza, JM
    Prieto, FJ
    MATHEMATICAL PROGRAMMING, 2003, 95 (03) : 573 - 616
  • [25] A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM FOR NONCONVEX, NONSMOOTH CONSTRAINED OPTIMIZATION
    Curtis, Frank E.
    Overton, Michael L.
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) : 474 - 500
  • [26] Saddle point generation in nonlinear nonconvex optimization
    Li, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) : 4339 - 4344
  • [27] Hidden convexity In some nonconvex quadratically constrained quadratic programming
    BenTal, A
    Teboulle, M
    MATHEMATICAL PROGRAMMING, 1996, 72 (01) : 51 - 63
  • [28] Regional complexity analysis of algorithms for nonconvex smooth optimization
    Frank E. Curtis
    Daniel P. Robinson
    Mathematical Programming, 2021, 187 : 579 - 615
  • [29] Regional complexity analysis of algorithms for nonconvex smooth optimization
    Curtis, Frank E.
    Robinson, Daniel P.
    MATHEMATICAL PROGRAMMING, 2021, 187 (1-2) : 579 - 615
  • [30] Compressed gradient tracking algorithms for distributed nonconvex optimization
    Xu, Lei
    Yi, Xinlei
    Wen, Guanghui
    Shi, Yang
    Johansson, Karl H.
    Yang, Tao
    AUTOMATICA, 2025, 177