Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances

被引:0
|
作者
Reda Djebbar
Touhami Rzigui
Pierre Pétriacq
Caroline Mauve
Pierrick Priault
Chantal Fresneau
Marianne De Paepe
Igor Florez-Sarasa
Ghouziel Benhassaine-Kesri
Peter Streb
Bertrand Gakière
Gabriel Cornic
Rosine De Paepe
机构
[1] Université des Sciences et de la Technologie Houari Boumediene,Laboratoire de Physiologie et Biologie des Organismes, Faculté des Sciences Biologiques
[2] Université Paris-Sud 11,Département de Biologie
[3] Ecologie,Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia
[4] Systématique et Evolution,undefined
[5] Université Paris-Sud 11,undefined
[6] Institut de Biologie des Plantes,undefined
[7] Laboratoire de Physiologie et Biotechnologie Végétales,undefined
[8] Faculté des Sciences de Tunis,undefined
[9] Université Paris-Sud 11 Plateforme Métabolisme Métabolome,undefined
[10] IFR87 La Plante et son Environnement,undefined
[11] Institut de Biologie des Plantes,undefined
[12] Universitat de les Illes Balears,undefined
[13] Université Pierre et Marie Curie,undefined
[14] Laboratoire de Physiologie Cellulaire et Moléculaire UMR 7180 CNRS,undefined
来源
Planta | 2012年 / 235卷
关键词
Drought; Mitochondria; Pyridine nucleotides; Stomatal and hydraulic conductances; TCA cycle-derived metabolites;
D O I
暂无
中图分类号
学科分类号
摘要
To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.
引用
收藏
页码:603 / 614
页数:11
相关论文
共 50 条
  • [31] A Complex I deficiency induces iron misregulation to promote neurodegeneration
    Hassan, Alaa
    Grillo, Anthony
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2024, 300 (03) : S545 - S545
  • [32] Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation
    Domec, Jean-Christophe
    Noormets, Asko
    King, John S.
    Sun, Ge
    McNulty, Steven G.
    Gavazzi, Michael J.
    Boggs, Johnny L.
    Treasure, Emrys A.
    PLANT CELL AND ENVIRONMENT, 2009, 32 (08): : 980 - 991
  • [33] Genetic adaptation and phenotypic plasticity contribute to greater leaf hydraulic tolerance in response to drought in warmer climates
    Blackman, Chris J.
    Aspinwall, Michael J.
    Tissue, David T.
    Rymer, Paul D.
    TREE PHYSIOLOGY, 2017, 37 (05) : 583 - 592
  • [34] Molecular genetic analysis of complex I genes in patients with a deficiency of complex I of the respiratory chain
    Buddiger, PAL
    Ruitenbeek, W
    Scholte, HR
    van Oost, BA
    Smeets, HJM
    DeCoo, IFM
    AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (04) : A305 - A305
  • [35] Affection of the respiratory muscles in combined complex I and IV deficiency
    Finsterer, J.
    Rauschka, H.
    Segal, L.
    Kovacs, G.
    EUROPEAN JOURNAL OF NEUROLOGY, 2016, 23 : 320 - 320
  • [36] Respiratory chain complex I deficiency in an infant with Ohtahara syndrome
    Castro-Gago, Manuel
    Oscar Blanco-Barca, Manuel
    Gomez-Lado, Carmen
    Eiris-Punal, Jesus
    Campos-Gonzalez, Yolanda
    Arenas-Barbero, Joaquin
    BRAIN & DEVELOPMENT, 2009, 31 (04): : 322 - 325
  • [37] Anesthesia for a child with complex I respiratory chain enzyme deficiency
    Cheam, EWS
    Critchley, LAH
    JOURNAL OF CLINICAL ANESTHESIA, 1998, 10 (06) : 524 - 527
  • [38] Respiratory chain complex I deficiency in an infant with infantile spasms
    Verdu, A
    Alonso, LA
    Arenas, J
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 1996, 60 (03): : 349 - 349
  • [39] Melatonin Enhances Drought Tolerance by Regulating Leaf Stomatal Behavior, Carbon and Nitrogen Metabolism, and Related Gene Expression in Maize Plants
    Zhao, Chengfeng
    Guo, Haoxue
    Wang, Jiarui
    Wang, Yifan
    Zhang, Renhe
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [40] Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees
    Powell, Thomas L.
    Wheeler, James K.
    de Oliveira, Alex A. R.
    Lola da Costa, Antonio Carlos
    Saleska, Scott R.
    Meir, Patrick
    Moorcroft, Paul R.
    GLOBAL CHANGE BIOLOGY, 2017, 23 (10) : 4280 - 4293