The usefulness of a computer-aided diagnosis scheme for improving the performance of clinicians to diagnose non-mass lesions on breast ultrasonographic images

被引:0
|
作者
Mai Shibusawa
Ryohei Nakayama
Yuko Okanami
Yumi Kashikura
Nao Imai
Takashi Nakamura
Hiroko Kimura
Masako Yamashita
Noriko Hanamura
Tomoko Ogawa
机构
[1] Mie University Hospital,Department of Breast Surgery
[2] Ritsumeikan University,Department of Electronic and Computer Engineering
[3] Tsukuba Medical Center Hospital,Department of Senology
[4] Nabari City Hospital,Department of Breast Surgery
来源
Journal of Medical Ultrasonics | 2016年 / 43卷
关键词
Computer-aided diagnosis; Breast ultrasonography; Breast non-mass lesions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:387 / 394
页数:7
相关论文
共 50 条
  • [41] Computer-aided diagnosis system for breast ultrasound images using deep learning
    Tanaka, Hiroki
    Chiu, Shih-Wei
    Watanabe, Takanori
    Kaoku, Setsuko
    Yamaguchi, Takuhiro
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (23):
  • [42] COMPUTER-AIDED DIAGNOSIS FOR COLORECTAL SERRATED LESIONS USING NON-MAGNIFIED WHITE LIGHT ENDOSCOPIC IMAGES
    Nakajima, Yuki
    Guo, Zhe
    Nemoto, Daiki
    Peng, Boyuan
    Zhang, Ruiyao
    Zhu, Xin
    Aizawa, Masato
    Utano, Kenichi
    Yamashina, Takeshi
    Hayashi, Yoshikazu
    Hewett, David G.
    Togashi, Kazutomo
    GASTROINTESTINAL ENDOSCOPY, 2021, 93 (06) : AB206 - AB206
  • [43] Feature Selection and Classifier Performance in Computer-aided Diagnosis for Breast Ultrasound
    Gomez, W.
    Rodriguez, A.
    Pereira, W. C. A.
    Infantosi, A. F. C.
    2013 10TH INTERNATIONAL CONFERENCE AND EXPO ON EMERGING TECHNOLOGIES FOR A SMARTER WORLD (CEWIT), 2013,
  • [44] Performance of breast ultrasound computer-aided diagnosis: Dependence on image selection
    Gruszauskas, Nicholas P.
    Drukker, Karen
    Giger, Maryellen L.
    Sennett, Charlene A.
    Pesce, Lorenzo L.
    ACADEMIC RADIOLOGY, 2008, 15 (10) : 1234 - 1245
  • [45] A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology
    Qiu, Yuchen
    Yan, Shiju
    Gundreddy, Rohith Reddy
    Wang, Yunzhi
    Cheng, Samuel
    Liu, Hong
    Zheng, Bin
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2017, 25 (05) : 751 - 763
  • [46] High-performance computing for computer-aided diagnosis of breast cancer
    Rangayyan, RM
    HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS, 2000, 541 : 473 - 473
  • [47] Computer-Aided Diagnosis of Diabetic Retinopathy Lesions Based on Knowledge Distillation in Fundus Images
    Moya-Albor, Ernesto
    Lopez-Figueroa, Alberto
    Jacome-Herrera, Sebastian
    Renza, Diego
    Brieva, Jorge
    MATHEMATICS, 2024, 12 (16)
  • [48] Computer-aided diagnosis of renal lesions in CT images: A comprehensive survey and future prospects
    Kaur, Ravinder
    Juneja, Mamta
    Mandal, A. K.
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 77 : 423 - 434
  • [49] The value of the computer-aided diagnosis system for thyroid lesions based on computed tomography images
    Liu, Chenbin
    Chen, Shanshan
    Yang, Yunze
    Shao, Dangdang
    Peng, Wenxian
    Wang, Yan
    Chen, Yihong
    Wang, Yuenan
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2019, 9 (04) : 642 - 653
  • [50] Computer-Aided Diagnosis System for Classifying the Liver Lesions from Multiphase CT Images
    PVaidehi Nayantara
    Surekha Kamath
    Manjunath KN
    Rajagopal Kadavigere
    Sensing and Imaging, 26 (1):