Numerical Solution Based on Hat Functions for Solving Nonlinear Stochastic Itô Volterra Integral Equations Driven by Fractional Brownian Motion

被引:0
作者
B. Hashemi
M. Khodabin
K. Maleknejad
机构
[1] Karaj Branch Islamic Azad University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Brownian and fractional Brownian motion process; Stochastic integral equation; Hat functions; Primary 65C30; 60H35; 65C20; Secondary 60H20; 68U20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a numerical method for solving nonlinear stochastic Itô Volterra integral equations driven by fractional Brownian motion with Hurst parameter H∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H \in (0,1)$$\end{document} via of hat functions. Using properties of the generalized hat basis functions and fractional Brownian motion, new stochastic operational matrix of integration is achieved and the nonlinear stochastic equation is transformed into nonlinear system of algebraic equations which by solving it, an approximation solution with high accuracy is obtained. In addition, error analysis of the method is investigated, and by some examples, efficiency and accuracy of the suggested method are shown.
引用
收藏
相关论文
共 48 条
  • [1] Maleknejad K(2012)Numerical solutions of stochastic Volterra integral equations by a stochastic operational matrix based on block puls functions Math. Comput. Model. 55 791-800
  • [2] Khodabin M(2011)Numerical solution of stochastic differential equations by second order Runge-Kutta methods Math. Comput. Model. 53 1910-1920
  • [3] Rostami M(2010)One linear analytic approximation for stochastic integro-differential equations Acta Math. Sci. 30 1073-1085
  • [4] Khodabin M(2007)Mean square numerical solution of random differential equations: facts and possibilities Comput. Math. Appl. 53 1098-1106
  • [5] Maleknejad K(1990)Successive approximations for solutions of second order stochastic integro differential equations of Ito type Indian J. Pure. Appl. Math. 21 260-274
  • [6] Rostami M(2007)Numerical solution of random differential equations: a mean square approach Math. Comput. Model. 45 757-765
  • [7] Nouri M(2012)Numerical approach for solving stochastic Volterra-Fredholm integral equations by stochastic operational matrix Comput. Math. Appl. 64 1903-1913
  • [8] Jankovic S(1989)Sur une int Ann. Prob. 17 1277-1699
  • [9] Ilic D(2008)grale pour les processus Stoch. Anal. Appl. 26 1053-1075
  • [10] Cortes J(2008)-variation born Stochastic 80 489-511