6D SCFTs and gravity

被引:0
作者
Michele Del Zotto
Jonathan J. Heckman
David R. Morrison
Daniel S. Park
机构
[1] Harvard University,Jefferson Physical Laboratory
[2] University of North Carolina,Department of Physics
[3] University of California,Departments of Mathematics and Physics
[4] Santa Barbara,Simons Center for Geometry and Physics
[5] Stony Brook University,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
F-Theory; Differential and Algebraic Geometry; Conformal and W Symmetry; Anomalies in Field and String Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study how to couple a 6D superconformal field theory (SCFT) to gravity. In F-theory, the models in question are obtained working on the supersymmetric background ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} $$\end{document}5,1 × B where B is the base of a compact elliptically fibered Calabi-Yau threefold in which two-cycles have contracted to zero size. When the base has orbifold singularities, we find that the anomaly polynomial of the 6D SCFTs can be understood purely in terms of the intersection theory of fractional divisors: the anomaly coefficient vectors are identified with elements of the orbifold homology. This also explains why in certain cases, the SCFT can appear to contribute a “fraction of a hypermultiplet” to the anomaly polynomial. Quantization of the lattice of string charges also predicts the existence of additional light states beyond those captured by such fractional divisors. This amounts to a refinement to the lattice of divisors in the resolved geometry. We illustrate these general considerations with explicit examples, focusing on the case of F-theory on an elliptic Calabi-Yau threefold with base ℙ2/ℤ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^2/{\mathbb{Z}}_3 $$\end{document}.
引用
收藏
相关论文
共 50 条
[41]   Heterotic T-fects, 6D SCFTs, and F-theory [J].
Font, Anamaria ;
Garcia-Etxebarria, Inaki ;
Luest, Dieter ;
Massai, Stefano ;
Mayrhofer, Christoph .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08)
[42]   Supersymmetric Renyi entropy and Anomalies in 6d (1,0) SCFTs [J].
Yankielowicz, Shimon ;
Zhou, Yang .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04)
[43]   SymTFTs and duality defects from 6d SCFTs on 4-manifolds [J].
Chen, Jin ;
Cui, Wei ;
Haghighat, Babak ;
Wang, Yi-Nan .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
[44]   Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs [J].
Michele Del Zotto ;
Jie Gu ;
Min-xin Huang ;
Amir-Kian Kashani-Poor ;
Albrecht Klemm ;
Guglielmo Lockhart .
Journal of High Energy Physics, 2018
[45]   Supersymmetric Rényi entropy and Anomalies in 6d (1,0) SCFTs [J].
Shimon Yankielowicz ;
Yang Zhou .
Journal of High Energy Physics, 2017
[46]   Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs [J].
Del Zotto, Michele ;
Gu, Jie ;
Huang, Min-xin ;
Kashani-Poor, Amir-Kian ;
Klemm, Albrecht ;
Lockhart, Guglielmo .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03)
[47]   A tale of bulk and branes: Symmetry TFT of 6D SCFTs from IIB/F-theory [J].
Tian, Jiahua ;
Wang, Yi-Nan .
JOURNAL OF HIGH ENERGY PHYSICS, 2025, (03)
[48]   MSW-type compactifications of 6d (1,0) SCFTs on 4-manifolds [J].
Chen, Jin ;
Chen, Zhuo ;
Cui, Wei ;
Haghighat, Babak .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 27 (06) :1857-1914
[49]   From large to small N = (4,4) superconformal surface defects in holographic 6d SCFTs [J].
Capuozzo, Pietro ;
Estes, John ;
Robinson, Brandon ;
Suzzoni, Benjamin .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08)
[50]   Geometry of 6D RG flows [J].
Jonathan J. Heckman ;
David R. Morrison ;
Tom Rudelius ;
Cumrun Vafa .
Journal of High Energy Physics, 2015