6D SCFTs and gravity

被引:0
作者
Michele Del Zotto
Jonathan J. Heckman
David R. Morrison
Daniel S. Park
机构
[1] Harvard University,Jefferson Physical Laboratory
[2] University of North Carolina,Department of Physics
[3] University of California,Departments of Mathematics and Physics
[4] Santa Barbara,Simons Center for Geometry and Physics
[5] Stony Brook University,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
F-Theory; Differential and Algebraic Geometry; Conformal and W Symmetry; Anomalies in Field and String Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study how to couple a 6D superconformal field theory (SCFT) to gravity. In F-theory, the models in question are obtained working on the supersymmetric background ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} $$\end{document}5,1 × B where B is the base of a compact elliptically fibered Calabi-Yau threefold in which two-cycles have contracted to zero size. When the base has orbifold singularities, we find that the anomaly polynomial of the 6D SCFTs can be understood purely in terms of the intersection theory of fractional divisors: the anomaly coefficient vectors are identified with elements of the orbifold homology. This also explains why in certain cases, the SCFT can appear to contribute a “fraction of a hypermultiplet” to the anomaly polynomial. Quantization of the lattice of string charges also predicts the existence of additional light states beyond those captured by such fractional divisors. This amounts to a refinement to the lattice of divisors in the resolved geometry. We illustrate these general considerations with explicit examples, focusing on the case of F-theory on an elliptic Calabi-Yau threefold with base ℙ2/ℤ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^2/{\mathbb{Z}}_3 $$\end{document}.
引用
收藏
相关论文
共 50 条
[31]   Non-simply-connected symmetries in 6D SCFTs [J].
Markus Dierigl ;
Paul-Konstantin Oehlmann ;
Fabian Ruehle .
Journal of High Energy Physics, 2020
[32]   Non-simply-connected symmetries in 6D SCFTs [J].
Dierigl, Markus ;
Oehlmann, Paul-Konstantin ;
Ruehle, Fabian .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
[33]   Atomic Higgsings of 6D SCFTs. Part I [J].
Bao, Jiakang ;
Zhang, Hao Y. .
JOURNAL OF HIGH ENERGY PHYSICS, 2025, (05)
[34]   Two 6D origins of 4D SCFTs: Class S and 6D (1,0) on a torus [J].
Baume, Florent ;
Kang, Monica Jinwoo ;
Lawrie, Craig .
PHYSICAL REVIEW D, 2022, 106 (08)
[35]   Holographic Weyl anomalies for 4d defects in 6d SCFTs [J].
Capuozzo, Pietro ;
Estes, John ;
Robinson, Brandon ;
Suzzoni, Benjamin .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (04)
[36]   General prescription for global U(1)'s in 6D SCFTs [J].
Apruzzi, Fabio ;
Fazzi, Marco ;
Heckman, Jonathan J. ;
Rudelius, Tom ;
Zhang, Hao Y. .
PHYSICAL REVIEW D, 2020, 101 (08)
[37]   6D SCFTs and the classification of homomorphisms ΓADE → E8 [J].
Frey, Darrin D. ;
Rudelius, Tom .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (03) :709-756
[38]   Heterotic T-fects, 6D SCFTs, and F-theory [J].
Anamaría Font ;
Iñaki García-Etxebarria ;
Dieter Lüst ;
Stefano Massai ;
Christoph Mayrhofer .
Journal of High Energy Physics, 2016
[39]   Distinguishing 6D (1,0) SCFTs: An extension to the geometric construction [J].
Distler, Jacques ;
Kang, Monica Jinwoo ;
Lawrie, Craig .
PHYSICAL REVIEW D, 2022, 106 (06)
[40]   Bestiary of 6D (1,0) SCFTs: Nilpotent orbits and anomalies [J].
Baume, Florent ;
Lawrie, Craig .
PHYSICAL REVIEW D, 2024, 110 (04)