Graph von Neumann Algebras

被引:0
作者
Ilwoo Cho
机构
[1] Saint Ambrose University,Department of Math
来源
Acta Applicandae Mathematicae | 2007年 / 95卷
关键词
graph groupoids; graph von Neumann algebras; graph ; -probability spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will define a graph von Neumann algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M}_{G}$\end{document} over a fixed von Neumann algebra M, where G is a countable directed graph, by a crossed product algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M}_{G}$\end{document} = M ×α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{G}$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{G}$\end{document} is the graph groupoid of G and α is the graph-representation. After defining a certain conditional expectation from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M}_{G}$\end{document} onto its M-diagonal subalgebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{D}_{G},$\end{document} we can see that this crossed product algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M}_{G}$\end{document} is *-isomorphic to an amalgamated free product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\underset{e\in E(G)}{\,*_{\Bbb{D}_{G}}}$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M} _{e},$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M}_{e}$\end{document} = vN(M ×α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{G}_{e},$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{D}_{G}),$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{G}_{e}$\end{document} is the subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{G}$\end{document} consisting of all reduced words in {e, e–1} and M ×α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{G} _{e}$\end{document} is a W*-subalgebra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M}_{G},$\end{document} as a new graph von Neumann algebra induced by a graph Ge. Also, we will show that, as a Banach space, a graph von Neumann algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M}_{G}$\end{document} is isomorphic to a Banach space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{D}_{G}$\end{document} ⊕ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\underset{w^{*}\in E(G)_{r}^{*}}{\oplus }$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{M}_{w^{*}}^{o}),$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E{\left( G \right)}^{*}_{r}$\end{document} is a certain subset of the set E(G)* of all words in the edge set E(G) of G.
引用
收藏
页码:95 / 134
页数:39
相关论文
共 10 条
[1]  
Nica A.(2002)R-cyclic families of matrices in free probability J. Funct. Anal. 188 227-271
[2]  
Shlyakhtenko D.(1998)Some applications of freeness with amalgamation J. Reine Angew. Math. 500 191-212
[3]  
Speicher R.(1995)Operations on certain non-commuting operator-valued random variables Astérisque 232 243-275
[4]  
Shlyakhtenko D.(1999)A-valued semicircular systems J. Funct. Anal. 166 1-47
[5]  
Voiculescu D.(1965)Centerless groups-an algebraic formulation of Gottlieb’s theorem Topology 4 129-134
[6]  
Shlyakhtenko D.(2001)Continous family of invariant subspaces for R-diagonal operators Invent. Math. 146 329-363
[7]  
Stallings J.(1994)Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index Invent. Math. 115 347-389
[8]  
Śniady P.(undefined)undefined undefined undefined undefined-undefined
[9]  
Speicher R.(undefined)undefined undefined undefined undefined-undefined
[10]  
Radulescu F.(undefined)undefined undefined undefined undefined-undefined