Hausdorff Dimension of Non-Hyperbolic Repellers. I: Maps with Holes

被引:0
作者
Vanderlei Horita
Marcelo Viana
机构
[1] IBILCE/UNESP,Departamento de Matemática
[2] IMPA,undefined
来源
Journal of Statistical Physics | 2001年 / 105卷
关键词
Hausdorff dimension; non-uniform hyperbolicity; repeller; dynamical dimension;
D O I
暂无
中图分类号
学科分类号
摘要
This is the first paper in a two-part series devoted to studying the Hausdorff dimension of invariant sets of non-uniformly hyperbolic, non-conformal maps. Here we consider a general abstract model, that we call piecewise smooth maps with holes. We show that the Hausdorff dimension of the repeller is strictly less than the dimension of the ambient manifold. Our approach also provides information on escape rates and dynamical dimension of the repeller.
引用
收藏
页码:835 / 862
页数:27
相关论文
共 8 条
[1]  
Alves J. F.(2000)SRB measures for non-hyperbolic systems with multidimensional expansion Ann. Sci. École Norm. Sup. 33 1-32
[2]  
Alves J. F.(2000)SRB measures for partially hyperbolic systems whose central direction is mostly expanding Invent. Math. 140 351-398
[3]  
Bonatti C.(1960)The Hausdorff dimension in probability theory Illinois J. Math. 4 187-209
[4]  
Viana M.(1989)Discontinuity of Hausdorff dimension and limit capacity on arcs of diffeomorphisms Ergodic Theory Dynam. Systems 9 403-425
[5]  
Billingsley P.(1984)On the notion of dimension with respect to a dynamicalsystem Ergodic Theory Dynam. Systems 4 405-420
[6]  
Díaz L. J.(undefined)undefined undefined undefined undefined-undefined
[7]  
Viana M.(undefined)undefined undefined undefined undefined-undefined
[8]  
Pesin Y.(undefined)undefined undefined undefined undefined-undefined