Asymmetric guessing games

被引:0
作者
Zafer Akin
机构
[1] American University in Dubai,Department of Decision Sciences and Economics
来源
Theory and Decision | 2023年 / 94卷
关键词
Guessing game; Asymmetry; Convergence; Game theory; Experimental economics;
D O I
暂无
中图分类号
学科分类号
摘要
This paper theoretically and experimentally investigates the behavior of asymmetric players in guessing games. The asymmetry is created by introducing r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>1$$\end{document} replicas of one of the players. Two-player and restricted N-player cases are examined in detail. Based on the model parameters, the equilibrium is either unique in which all players choose zero or mixed in which the weak player (r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1$$\end{document}) imitates the strong player (r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>1$$\end{document}). A series of experiments involving two and three-player repeated guessing games with unique equilibrium is conducted. We find that equilibrium behavior is observed less frequently and overall choices are farther from the equilibrium in two-player asymmetric games in contrast to symmetric games, but this is not the case in three-player games. Convergence towards equilibrium exists in all cases but asymmetry slows down the speed of convergence to the equilibrium in two, but not in three-player games. Furthermore, the strong players have a slight earning advantage over the weak players, and asymmetry increases the discrepancy in choices (defined as the squared distance of choices from the winning number) in both games.
引用
收藏
页码:637 / 676
页数:39
相关论文
共 50 条
  • [31] How transparency may corrupt - experimental evidence from asymmetric public goods games
    Khadjavi, Menusch
    Lange, Andreas
    Nicklisch, Andreas
    JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2017, 142 : 468 - 481
  • [32] David vs. Goliath: An analysis of asymmetric mixed-strategy games and experimental evidence
    Amaldoss, W
    Jain, S
    MANAGEMENT SCIENCE, 2002, 48 (08) : 972 - 991
  • [33] A Best-Fit Framework and Systematic Review of Asymmetric Gameplay in Multiplayer Virtual Reality Games
    Rogers, Katja
    Karaosmanoglu, Sukran
    Wolf, Dennis
    Steinicke, Frank
    Nacke, Lennart E.
    FRONTIERS IN VIRTUAL REALITY, 2021, 2
  • [34] Regular potential games
    Swenson, Brian
    Murray, Ryan
    Kar, Soummya
    GAMES AND ECONOMIC BEHAVIOR, 2020, 124 : 432 - 453
  • [35] Designing Games for Distributed Optimization
    Li, Na
    Marden, Jason R.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2013, 7 (02) : 230 - 242
  • [36] Towards understanding the Guessing Game: a dynamical systems' perspective
    Reimann, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (3-4) : 559 - 573
  • [37] Dependence in games and dependence games
    Grossi, Davide
    Turrini, Paolo
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2012, 25 (02) : 284 - 312
  • [38] Dependence in games and dependence games
    Davide Grossi
    Paolo Turrini
    Autonomous Agents and Multi-Agent Systems, 2012, 25 : 284 - 312
  • [39] Population Games on Dynamic Community Networks
    Govaert, Alain
    Zino, Lorenzo
    Tegling, Emma
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2695 - 2700
  • [40] A Phase Transition in Large Network Games
    Shende, Abhishek
    Vasal, Deepanshu
    Vishwanath, Sriram
    GAME THEORY FOR NETWORKS, GAMENETS 2022, 2022, 457 : 263 - 277