p-Bessel Pairs, Hardy’s Identities and Inequalities and Hardy–Sobolev Inequalities with Monomial Weights

被引:0
作者
Nguyen Tuan Duy
Nguyen Lam
Guozhen Lu
机构
[1] University of Finance-Marketing,Department of Fundamental Sciences
[2] Memorial University of Newfoundland,School of Science and the Environment
[3] University of Connecticut,Department of Mathematics
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
-Bessel pair; Hardy inequality; Hardy–Sobolev inequality; Monomial weight; 42B35; 42B37; 26D10; 46E35; 35A23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first prove a general symmetrization principle for the Hardy type inequality with non-radial weights of the form Axx1P1…xNPN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\left( \left| x\right| \right) \left| x_{1}\right| ^{P_{1}}\ldots \left| x_{N}\right| ^{P_{N}}$$\end{document} (Theorem 1.1). Using this symmetrization principle for Hardy’s inequalities, we can establish the improved Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p} $$\end{document}-Hardy inequalities with such non-radial monomial weights (Theorem 1.2). Second, we introduce the notion of p-Bessel pairs and give applications to Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-Hardy identities with non-radial monomial weights (Theorem 1.3) and Hardy inequalities (see Theorem 1.4) and their virtual extremals (see Remark 1.2). (See Theorem 1.5 for the special case p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} where we derive L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-Hardy identities and inequalities with monomial weights which have not been studied in the literature). In the special case when P=(0,…,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=(0,\ldots ,0)$$\end{document}, they imply the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-Hardy identities and Hardy inequalities with remainder terms on any finite balls and the entire space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document} (Theorem 1.6), while in the special case P=(0,…,0,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=(0,\ldots ,0,\alpha )$$\end{document}, α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, our results provide the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-Hardy identities and Hardy inequalities on half balls and the half spaces (Theorem 1.7). By taking special examples of p-Bessel pairs, we establish some particular Hardy’s identities and weighted Sobolev inequalities which are of independent interest. We also establish the optimal Hardy inequalities with monomial weights and explicit forms of extremal functions. (See Corollaries 1.1, 1.2, 1.3, 1.4, 1.5.) Our above results sharpened earlier results in the literature even in the case of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} Hardy inequalities. Finally, we establish the sharp constants and optimal functions of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-Hardy–Sobolev inequalities with monomial weights (Theorem 1.8).
引用
收藏
相关论文
共 69 条
[1]  
Barbatis G(2004)A unified approach to improved Trans. Am. Math. Soc. 356 2169-2196
[2]  
Filippas S(2012) Hardy inequalities with best constants Forum Math. 24 177-209
[3]  
Tertikas A(2008)Pitt’s inequality and the fractional Laplacian: sharp error estimates Math. Res. Lett. 15 613-622
[4]  
Beckner W(1930)The sharp constant in the Hardy–Sobolev–Maz’ya inequality in the three dimensional upper half-space J. Lond. Math. Soc. 5 40-46
[5]  
Benguria RD(1997)An integral inequality Rev. Mat. Univ. Complut. Madrid 10 443-469
[6]  
Frank RL(2013)Blow-up solutions of some nonlinear elliptic problems Commun. Partial Differ. Equ. 38 135-154
[7]  
Loss M(2013)Regularity of stable solutions up to dimension 7 in domains of double revolution J. Differ. Equ. 255 4312-4336
[8]  
Bliss GA(2016)Sobolev and isoperimetric inequalities with monomial weights J. Eur. Math. Soc. (JEMS) 18 2971-2998
[9]  
Brezis H(2017)Sharp isoperimetric inequalities via the ABP method Ann. Mat. Pura Appl. (4) 196 579-598
[10]  
Vázquez JL(2001)Hardy–Sobolev-type inequalities with monomial weights Commun. Pure Appl. Math. 54 229-258