Non-integrability and chaos with unquenched flavor

被引:0
作者
Dimitrios Giataganas
Konstantinos Zoubos
机构
[1] National Tsing-Hua University,Physics Division, National Center for Theoretical Sciences
[2] University of Pretoria,Department of Physics
[3] National Institute for Theoretical Physics (NITheP),undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
AdS-CFT Correspondence; Gauge-gravity correspondence; Integrable Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study (non-)integrability and the presence of chaos in gravity dual backgrounds of strongly coupled gauge theories with unquenched flavor, specifically of the four-dimensional N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} super Yang-Mills theory and the three-dimensional ABJM theory. By examining string motion on the geometries corresponding to backreacted D3/D7 and D2/D6 systems, we show that integrable theories with quenched flavor become non-integrable when the virtual quark loops are taken into account. For the string solutions in the backreacted D3/D7 system, we compute the leading Lyapunov exponent which turns out to saturate to a positive value as the number of flavors increases. The exponent depends very weakly on the number of flavors when they approach the number of colors. This suggests that once a particular flavor number in the theory is reached, a further increase does not lead to more severe chaotic phenomena, implying certain saturation effects on chaos.
引用
收藏
相关论文
共 140 条
[1]  
Beisert N(2012)Review of AdS/CFT Integrability: An Overview Lett. Math. Phys. 99 3-undefined
[2]  
Bombardelli D(2016)An integrability primer for the gauge-gravity correspondence: An introduction J. Phys. A 49 320301-undefined
[3]  
Basu P(2011)Analytic Non-integrability in String Theory Phys. Rev. D 84 106-undefined
[4]  
Pando Zayas LA(2016)A bound on chaos JHEP 08 067-undefined
[5]  
Maldacena J(2014)Black holes and the butterfly effect JHEP 03 046-undefined
[6]  
Shenker SH(2014)Multiple Shocks JHEP 12 81-undefined
[7]  
Stanford D(2017)Universality in Chaos of Particle Motion near Black Hole Horizon Phys. Rev. D 95 196714-undefined
[8]  
Shenker SH(2008)Mesons in Gauge/Gravity Duals — A Review Eur. Phys. J. A 35 043-undefined
[9]  
Stanford D(2010)Unquenched Flavor in the Gauge/Gravity Correspondence Adv. High Energy Phys. 2010 022-undefined
[10]  
Shenker SH(2002)Adding flavor to AdS/CFT JHEP 06 091-undefined