Mean curvature flow via convex functions on Grassmannian manifolds

被引:0
作者
Yuanlong Xin
Ling Yang
机构
[1] Fudan University,Institute of Mathematics
[2] Max Planck Institute for the Mathematics in Sciences,undefined
来源
Chinese Annals of Mathematics, Series B | 2010年 / 31卷
关键词
Mean curvature flow; Convex function; Gauss map; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Using the convex functions on Grassmannian manifolds, the authors obtain the interior estimates for the mean curvature flow of higher codimension. Confinable properties of Gauss images under the mean curvature flow have been obtained, which reveal that if the Gauss image of the initial submanifold is contained in a certain sublevel set of the υ-function, then all the Gauss images of the submanifolds under the mean curvature flow are also contained in the same sublevel set of the υ-function. Under such restrictions, curvature estimates in terms of υ-function composed with the Gauss map can be carried out.
引用
收藏
页码:315 / 328
页数:13
相关论文
共 26 条
[1]  
Chen J. Y.(2001)Mean curvature flow of surfaces in 4-manifolds Adv. Math. 163 287-309
[2]  
Li J. Y.(2004)Singularity of mean curvature flow of Lagrangian submanifolds Invent. Math. 156 25-51
[3]  
Chen J. Y.(2000)Moving symplectic curves in Kähler-Einstein surfaces Acta Math. Sin. (Engl. Ser.) 16 541-548
[4]  
Li J. Y.(1989)Mean curvature evolution of entire graphs Ann. of Math. 130 453-471
[5]  
Chen J. Y.(1991)Interior estimates for hypersurfaces moving by mean curvature Invent. Math. 105 547-569
[6]  
Tian G.(1999)Bernstein type theorems for higher codimension Calc. Var. Part. Diff. Eqs. 9 277-296
[7]  
Ecker K.(1984)Flow by mean curvature of convex surfaces into spheres J. Diff. Geom. 20 237-266
[8]  
Huisken G.(1990)Asymptotic behavior for singularities of the mean curvature flow J. Diff. Geom. 31 285-299
[9]  
Ecker K.(1999)Harnack inequality for the Lagrangian mean curvature flow Calc. Var. Part. Diff. Eqs. 8 247-258
[10]  
Huisken G.(2002)Angle theorems for Lagrangian mean curvature flow Math. Z. 240 849-863