Mean-Field Limit of a Microscopic Individual-Based Model Describing Collective Motions

被引:0
作者
Carlo Bianca
Christian Dogbe
机构
[1] CNRS and Sorbonne Universités,Laboratoire de Physique Théorique de la Matière Condensée
[2] Université de Caen Basse-Normandie,Département de Mathématiques
[3] Laboratoire de Mathématiques Nicolas Oresme,undefined
[4] LMNO CNRS,undefined
来源
Journal of Nonlinear Mathematical Physics | 2015年 / 22卷
关键词
Collective motion; interacting stochastic particle systems; weak solutions; uniqueness; 82C22; 35Q35; 60K35; 35Q83; 35A05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is mainly concerned with a mean-field limit and long time behavior of stochastic microscopic interacting particles systems. Specifically we prove that a class of ODE modeling collective interactions in animals or pedestrians converges in the mean-field limit to the solution of a non-local kinetic PDE. The mathematical analysis, performed by weak measure solutions arguments, shows the existence of measure-valued solutions, asymptotic stability and chaos propagation that are relevant properties in the description of collective behaviors that emerge in animals and pedestrians motions.
引用
收藏
页码:117 / 143
页数:26
相关论文
empty
未找到相关数据