Discrete Uncertainty Principles and Sparse Signal Processing

被引:0
|
作者
Afonso S. Bandeira
Megan E. Lewis
Dustin G. Mixon
机构
[1] New York University,Department of Mathematics, Courant Institute of Mathematical Sciences
[2] Detachment 5,Department of Mathematics and Statistics
[3] Air Force Operational Test and Evaluation Center,undefined
[4] Air Force Institute of Technology,undefined
关键词
Uncertainty principle; Sparsity; Compressed sensing;
D O I
暂无
中图分类号
学科分类号
摘要
We develop new discrete uncertainty principles in terms of numerical sparsity, which is a continuous proxy for the 0-norm. Unlike traditional sparsity, the continuity of numerical sparsity naturally accommodates functions which are nearly sparse. After studying these principles and the functions that achieve exact or near equality in them, we identify certain consequences in a number of sparse signal processing applications.
引用
收藏
页码:935 / 956
页数:21
相关论文
共 50 条
  • [31] Uncertainty principles in Banach spaces and signal recovery
    Goh, Say Song
    Goodman, Tim N. T.
    JOURNAL OF APPROXIMATION THEORY, 2006, 143 (01) : 26 - 35
  • [32] Signal representation, uncertainty principles and localization measures
    Peter Maass
    Chen Sagiv
    Hans-Georg Stark
    Bruno Torresani
    Advances in Computational Mathematics, 2014, 40 : 597 - 607
  • [33] A Tutorial on Sparse Signal Reconstruction and Its Applications in Signal Processing
    Stankovic, Ljubia
    Sejdic, Ervin
    Stankovic, Srdjan
    Dakovic, Milo
    Orovic, Irena
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (03) : 1206 - 1263
  • [34] Discrete Signal Processing with Set Functions
    Puschel, Markus
    Wendler, Chris
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 1039 - 1053
  • [35] Strong Impossibility Results for Sparse Signal Processing
    Tan, Vincent Y. F.
    Atia, George K.
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) : 260 - 264
  • [36] Discrete space optical signal processing
    Moeini, Mohammad Moein
    Sounas, Dimitrios L.
    OPTICA, 2020, 7 (10) : 1325 - 1331
  • [37] THEORY OF DISCRETE SIGNAL PROCESSING.
    Berman, S.D.
    Grushko, I.I.
    Problems of information transmission, 1983, 19 (04) : 284 - 288
  • [38] Waveform Design for Sparse Signal Processing in Radar
    Anitori, Laura
    Ender, Joachim
    2021 IEEE RADAR CONFERENCE (RADARCONF21): RADAR ON THE MOVE, 2021,
  • [39] Sparse Bayesian learning approach for discrete signal reconstruction
    Dai, Jisheng
    Liu, An
    So, Hing Cheung
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (09): : 6537 - 6565
  • [40] Errata for Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions
    Emmanuel J. Candes
    Justin Romberg
    Foundations of Computational Mathematics, 2007, 7 : 529 - 531