Discrete Uncertainty Principles and Sparse Signal Processing

被引:0
|
作者
Afonso S. Bandeira
Megan E. Lewis
Dustin G. Mixon
机构
[1] New York University,Department of Mathematics, Courant Institute of Mathematical Sciences
[2] Detachment 5,Department of Mathematics and Statistics
[3] Air Force Operational Test and Evaluation Center,undefined
[4] Air Force Institute of Technology,undefined
关键词
Uncertainty principle; Sparsity; Compressed sensing;
D O I
暂无
中图分类号
学科分类号
摘要
We develop new discrete uncertainty principles in terms of numerical sparsity, which is a continuous proxy for the 0-norm. Unlike traditional sparsity, the continuity of numerical sparsity naturally accommodates functions which are nearly sparse. After studying these principles and the functions that achieve exact or near equality in them, we identify certain consequences in a number of sparse signal processing applications.
引用
收藏
页码:935 / 956
页数:21
相关论文
共 50 条
  • [21] A unified approach to sparse signal processing
    Farokh Marvasti
    Arash Amini
    Farzan Haddadi
    Mahdi Soltanolkotabi
    Babak Hossein Khalaj
    Akram Aldroubi
    Saeid Sanei
    Janathon Chambers
    EURASIP Journal on Advances in Signal Processing, 2012
  • [22] Sparse representation in speech signal processing
    Lee, TW
    Jang, GJ
    Kwon, OW
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING X, PTS 1 AND 2, 2003, 5207 : 311 - 320
  • [23] Frame Coherence and Sparse Signal Processing
    Mixon, Dustin G.
    Bajwa, Waheed U.
    Calderbank, Robert
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 663 - 667
  • [24] Uncertainty Principles with Discrete Quaternion Fourier Transforms
    Yang, Yan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 19 (01)
  • [25] Quantitative robust uncertainty principles and optimally sparse decompositions
    Candès, Emmanuel J.
    Romberg, Justin
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (02) : 227 - 254
  • [26] Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions
    Emmanuel J. Candes
    Justin Romberg
    Foundations of Computational Mathematics, 2006, 6 : 227 - 254
  • [27] Uncertainty Relations and Sparse Signal Recovery for Pairs of General Signal Sets
    Kuppinger, Patrick
    Durisi, Giuseppe
    Boelcskei, Helmut
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (01) : 263 - 277
  • [28] Uncertainty, fuzzy logic, and signal processing
    Mendel, JM
    SIGNAL PROCESSING, 2000, 80 (06) : 913 - 933
  • [29] A Tutorial on Sparse Signal Reconstruction and Its Applications in Signal Processing
    Ljubiša Stanković
    Ervin Sejdić
    Srdjan Stanković
    Miloš Daković
    Irena Orović
    Circuits, Systems, and Signal Processing, 2019, 38 : 1206 - 1263
  • [30] Signal representation, uncertainty principles and localization measures
    Maass, Peter
    Sagiv, Chen
    Stark, Hans-Georg
    Torresani, Bruno
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (03) : 597 - 607