Applications of Wigner's theorem to positive maps preserving norm of operator products

被引:0
作者
Li J. [1 ]
机构
[1] Department of Applied Mathematics, Donghua University
关键词
Norm; Operator algebra; Preserver problem; Singular value; Wigner's theorem;
D O I
10.1007/s11464-006-0029-3
中图分类号
学科分类号
摘要
We apply Wigner's theorem to positive maps on standard operator algebras that preserve norm of operator products or sum of singular values of operator products. It follows that such preservers are of the form ℓ(A) = U AU*with U either a unitary or antiunitary operator. © Higher Education Press 2006.
引用
收藏
页码:582 / 588
页数:6
相关论文
共 8 条
[1]  
Wigner E., Gruppentheorie und Ihre Anwendung Auf Die Quantenmechanik der Atomspektren, 6 MR, (1931)
[2]  
Ratz J., On Wigner's theorem: Remarks, complements, comments and corollaries, Aequationes Math, 52, pp. 1-9, (1996)
[3]  
Bakic D., Guljas B., Wigner's theorem in Hilbert C*-modules over C*-algebras of compact operators, Proc Amer Math Soc, 130, 8, pp. 2343-2349, (2002)
[4]  
Bargmann V., Note on Wigner's theorem on symmetry operations, J Math Phys, 5, pp. 862-868, (1964)
[5]  
Molnar L., A generalization of Wigner's unitary-antiunitary theorem to Hilbert modules, J Math Phys, 40, pp. 5544-5554, (1999)
[6]  
Molnar L., An algebraic approach to Wigner's unitary-antiunitary theorem, J Austral Math Soc, 65, pp. 354-369, (1998)
[7]  
Hou J., Cui J., Invitation to Linear Mappings on Operator Algebras, (2002)
[8]  
Zhu K., Operator Theory in Function Spaces, (1990)