Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery

被引:0
|
作者
Seung Yeun Chung
Jee Suk Chang
Min Seo Choi
Yongjin Chang
Byong Su Choi
Jaehee Chun
Ki Chang Keum
Jin Sung Kim
Yong Bae Kim
机构
[1] Yonsei University College of Medicine,Department of Radiation Oncology, Yonsei Cancer Center
[2] Ajou University School of Medicine,Department of Radiation Oncology
[3] CorelineSoft,undefined
[4] Co,undefined
来源
Radiation Oncology | / 16卷
关键词
Breast cancer; Auto-segmentation; Deep learning; Clinical target volume; Organs-at-risk;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery
    Chung, Seung Yeun
    Chang, Jee Suk
    Choi, Min Seo
    Chang, Yongjin
    Choi, Byong Su
    Chun, Jaehee
    Keum, Ki Chang
    Kim, Jin Sung
    Kim, Yong Bae
    RADIATION ONCOLOGY, 2021, 16 (01)
  • [2] Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
    Ma, Chen-Ying
    Zhou, Ju-Ying
    Xu, Xiao-Ting
    Guo, Jian
    Han, Miao-Fei
    Gao, Yao-Zong
    Du, Hui
    Stahl, Johannes N.
    Maltz, Jonathan S.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (02):
  • [3] Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer
    Choi, Min Seo
    Choi, Byeong Su
    Chung, Seung Yeun
    Kim, Nalee
    Chun, Jaehee
    Kim, Yong Bae
    Chang, Jee Suk
    Kim, Jin Sung
    RADIOTHERAPY AND ONCOLOGY, 2020, 153 : 139 - 145
  • [4] Geometric and dosimetric evaluation of deep learning based auto-segmentation for clinical target volume on breast cancer
    Zhong, Yang
    Guo, Ying
    Fang, Yingtao
    Wu, Zhiqiang
    Wang, Jiazhou
    Hu, Weigang
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (07):
  • [5] The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer
    Guo, Hongbo
    Wang, Jiazhou
    Xia, Xiang
    Zhong, Yang
    Peng, Jiayuan
    Zhang, Zhen
    Hu, Weigang
    RADIATION ONCOLOGY, 2021, 16 (01)
  • [6] The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer
    Hongbo Guo
    Jiazhou Wang
    Xiang Xia
    Yang Zhong
    Jiayuan Peng
    Zhen Zhang
    Weigang Hu
    Radiation Oncology, 16
  • [7] Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy
    Elguindi, Sharif
    Zelefsky, Michael J.
    Jiang, Jue
    Veeraraghavan, Harini
    Deasy, Joseph O.
    Hunt, Margie A.
    Tyagi, Neelam
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2019, 12 : 80 - 86
  • [8] Evaluation of deep learning-based auto-segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients
    Wang, Zhi
    Chang, Yankui
    Peng, Zhao
    Lv, Yin
    Shi, Weijiong
    Wang, Fan
    Pei, Xi
    Xu, X. George
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2020, 21 (12): : 272 - 279
  • [9] Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
    Chung, Seung Yeun
    Chang, Jee Suk
    Kim, Yong Bae
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [10] A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy
    Chen, Xuming
    Sun, Shanlin
    Bai, Narisu
    Han, Kun
    Liu, Qianqian
    Yao, Shengyu
    Tang, Hao
    Zhang, Chupeng
    Lu, Zhipeng
    Huang, Qian
    Zhao, Guoqi
    Xu, Yi
    Chen, Tingfeng
    Xie, Xiaohui
    Liu, Yong
    RADIOTHERAPY AND ONCOLOGY, 2021, 160 : 175 - 184