Graded elementary quasi-Hopf algebras of tame representation type

被引:0
|
作者
Hua-Lin Huang
Gongxiang Liu
Yu Ye
机构
[1] Shandong University,School of Mathematics
[2] Nanjing University,Department of Mathematics
[3] University of Science and Technology of China,School of Mathematics
来源
Israel Journal of Mathematics | 2015年 / 209卷
关键词
Abelian Group; Hopf Algebra; Representation Type; Standard Generator; Monoidal Category;
D O I
暂无
中图分类号
学科分类号
摘要
The class of graded elementary quasi-Hopf algebras of tame type is classified. Together with our previous work [19], this completes the trichotomy for such a class of algebras according to their representation types. In addition, new examples of genuine elementary quasi-Hopf algebras, and accordingly finite pointed tensor categories, are provided.
引用
收藏
页码:157 / 186
页数:29
相关论文
共 50 条
  • [31] Representation type for block algebras of Hecke algebras of classical type
    Ariki, Susumu
    ADVANCES IN MATHEMATICS, 2017, 317 : 823 - 845
  • [32] The representation type of Jacobian algebras
    Geiss, Christof
    Labardini-Fragoso, Daniel
    Schroeer, Jan
    ADVANCES IN MATHEMATICS, 2016, 290 : 364 - 452
  • [33] Representation type of Jordan algebras
    Kashuba, Iryna
    Ovsienko, Serge
    Shestakov, Ivan
    ADVANCES IN MATHEMATICS, 2011, 226 (01) : 385 - 418
  • [34] L-R-smash product for (quasi-)Hopf algebras
    Panaite, Florin
    Van Oystaeyen, Freddy
    JOURNAL OF ALGEBRA, 2007, 309 (01) : 168 - 191
  • [35] Corepresentation and Categorical Realization of Dual Hom-Quasi-Hopf Algebras
    Yongsheng CHENG
    Guang-ai SONG
    JournalofMathematicalResearchwithApplications, 2015, 35 (02) : 157 - 171
  • [36] Representation Type of Nodal Algebras of Type D
    Yu. A. Drozd
    V. V. Zembyk
    Ukrainian Mathematical Journal, 2014, 66 : 1037 - 1047
  • [37] Representation Type of Nodal Algebras of Type D
    Drozd, Yu A.
    Zembyk, V. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (07) : 1037 - 1047
  • [38] The representation type of Hecke algebras of type B
    Ariki, S
    Mathas, A
    ADVANCES IN MATHEMATICS, 2004, 181 (01) : 134 - 159
  • [39] On Algebras of Finite General Representation Type
    Kinser, Ryan
    Lara, Danny
    TRANSFORMATION GROUPS, 2024,
  • [40] SUPPORT VARIETIES AND REPRESENTATION TYPE OF SELF-INJECTIVE ALGEBRAS
    Feldvoss, Joerg
    Witherspoon, Sarah
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2011, 13 (02) : 197 - 215