Neighbor distinguishing total choice number of sparse graphs via the Combinatorial Nullstellensatz

被引:0
作者
Cun-quan Qu
Lai-hao Ding
Guang-hui Wang
Gui-ying Yan
机构
[1] Shandong University,School of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
来源
Acta Mathematicae Applicatae Sinica, English Series | 2016年 / 32卷
关键词
neighbor sum distinguishing total coloring; Combinatorial Nullstellensatz; neighbor sum distinguishing total choice number; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = (V,E) be a graph and ϕ: V ∪E → {1, 2, · · ·, k} be a total-k-coloring of G. Let f(v)(S(v)) denote the sum(set) of the color of vertex v and the colors of the edges incident with v. The total coloring ϕ is called neighbor sum distinguishing if (f(u) ≠ f(v)) for each edge uv ∈ E(G). We say that ϕ is neighbor set distinguishing or adjacent vertex distinguishing if S(u) ≠ S(v) for each edge uv ∈ E(G). For both problems, we have conjectures that such colorings exist for any graph G if k ≥ Δ(G) + 3. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad (G). In this paper, by using the Combinatorial Nullstellensatz and the discharging method, we prove that these two conjectures hold for sparse graphs in their list versions. More precisely, we prove that every graph G with maximum degree Δ(G) and maximum average degree mad(G) has chΣ″(G) ≤ Δ(G) + 3 (where chΣ″(G) is the neighbor sum distinguishing total choice number of G) if there exists a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,m) \in \{ (6,4),(5,\tfrac{{18}} {5}),(4,\tfrac{{16}} {5})\}$$\end{document} such that Δ(G) ≥ k and mad (G) <m.
引用
收藏
页码:537 / 548
页数:11
相关论文
共 56 条
[1]  
Alon N.(1999)Combinatorial Nullstellensatz Combin. Probab. Comput. 8 7-29
[2]  
Chartrand G.(1988)Irregular networks Congr. Numer. 64 197-210
[3]  
Jacobson M.(2008)On the adjacent vertex distinguishing total coloring numbers of graphs with Δ = 3 Discrete Math. 17 4003-4007
[4]  
Lehel J.(2014)Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz Sci. Sin. Math. 57 1875-1882
[5]  
Oellermann O.(2014)Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree Acta Math. Sinica 30 703-709
[6]  
Ruiz S.(2012)Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree Sci. Sin. Math. 42 151-164
[7]  
Saba F.(2012)Weighted-1-antimagic graphs of prime power order Discrete Math. 312 2162-2169
[8]  
Chen X.(2010)Vertex-coloring edge-weightings: towards the 1-2-3-conjecture J. Combin. Theory Ser. B. 100 347-349
[9]  
Ding L.(2004)Edge weights and vertex colors J. Combin. Theory Ser. B 91 151-157
[10]  
Wang G.(2013)Neighbor sum distinguishing total colorings of planar graphs J. Comb. Optim. 30 1-14