ZnO and related materials: Plasma-Assisted molecular beam epitaxial growth, characterization and application

被引:0
作者
S. K. Hong
Y. Chen
H. J. Ko
H. Wenisch
T. Hanada
T. Yao
机构
[1] Tohoku University,Institute for Materials Research
来源
Journal of Electronic Materials | 2001年 / 30卷
关键词
Plasma-assisted molecular beam epitaxy (P-MBE); ZnO; ZnO-related materials; heterostructure; ZnO/GaN; MgZnO/ZnO; interface engineering; heterointerface; polarity control;
D O I
暂无
中图分类号
学科分类号
摘要
This paper will address features of plasma-assisted molecular beam epitaxial growth of ZnO and related materials and their characteristics. Two-dimensional, layer-by-layer growth is achieved both on c-plane sampphire by employing MgO buffer layer growth and on (0001) GaN/Al2O3 template by predepositing a low-temperature buffer layer followed by high-temperature annealing. Such two-dimensional growth results in the growth of high-quality heteroepitaxial ZnO epilayers. Biexciton emission is obtained from such high quality epilayers The polarity of heteroepitaxial ZnO epilayers is controlled by engineering the heterointerfaces. We achieved selective growth of Zn-polar and O-polar ZnO heteroepitaxial layers. The origin of different polarities can be successfully explained by an interface bonding sequence model. N-type conductivity in Gadoped ZnO epilayers is successfully controlled. High conductivity, enough to be applicable to devices, is achieved. MgxZn1-xO/ZnO heterostructures are grown and emission from a ZnO quantum well is observed. Mg incorporation in a MgZnO alloy is determined by in-situ reflection high-energy electron diffraction intensity oscillations, which enables precise control of the composition. Homoepitaxy on commericial ZnO substrates has been examined. Reflection high-energy electron diffraction intensity oscillations during homoepitaxy growth are observed.
引用
收藏
页码:647 / 658
页数:11
相关论文
共 252 条
[1]  
Bagnall D.M.(1997)undefined Appl. Phys. Lett. 70 2230-2230
[2]  
Chen Y.F.(1998)undefined Appl. Phys. Lett. 72 3270-3270
[3]  
Zhu Z.(1998)undefined Appl. Phys. Lett. 73 1038-1038
[4]  
Yao T.(1994)undefined Jpn. J. Appl. Phys. 23 L280-L280
[5]  
Koyama S.(1997)undefined Appl. Phys. Lett. 70 2735-2735
[6]  
Shen M.Y.(1998)undefined J. Appl. Phys. 84 3912-3912
[7]  
Goto T.(1999)undefined Recent Res. Devel. Cryst. Growth Res. 1 257-257
[8]  
Tang Z.K.(2000)undefined Mater. Sci. Eng. B 75 190-190
[9]  
Wong G.K.L.(1988)undefined Appl. Phys. Lett. 52 138-138
[10]  
Yu P.(1996)undefined J. Electron. Mater. 25 855-855