Remarks on singular Cayley graphs and vanishing elements of simple groups

被引:0
作者
J. Siemons
A. Zalesski
机构
[1] University of East Anglia,School of Mathematics
[2] National Academy of Sciences of Belarus,Department of Physics, Mathematics and Informatics
来源
Journal of Algebraic Combinatorics | 2019年 / 50卷
关键词
Singular Cayley graphs; Vertex transitive graphs; Vanishing elements; Block theory of symmetric and alternating groups; 05E99; 68R10; 20G30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a finite graph and let A(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(\Gamma )$$\end{document} be its adjacency matrix. Then Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is singular if A(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(\Gamma )$$\end{document} is singular. The singularity of graphs is of certain interest in graph theory and algebraic combinatorics. Here we investigate this problem for Cayley graphs Cay(G,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Cay}(G,H)$$\end{document} when G is a finite group and when the connecting set H is a union of conjugacy classes of G. In this situation, the singularity problem reduces to finding an irreducible character χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of G for which ∑h∈Hχ(h)=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{h\in H}\,\chi (h)=0.$$\end{document} At this stage, we focus on the case when H is a single conjugacy class hG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^G$$\end{document} of G; in this case, the above equality is equivalent to χ(h)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (h)=0$$\end{document}. Much is known in this situation, with essential information coming from the block theory of representations of finite groups. An element h∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in G$$\end{document} is called vanishing  if χ(h)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (h)=0$$\end{document} for some irreducible character χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of G. We study vanishing elements mainly in finite simple groups and in alternating groups in particular. We suggest some approaches for constructing singular Cayley graphs.
引用
收藏
页码:379 / 401
页数:22
相关论文
共 29 条
[1]  
Babai L(1979)Spectra of Cayley Graphs J. Combin. Theory Ser. B 27 180-189
[2]  
Chen X(2017)Blocks of small defect in alternating groups and squares of Brauer character degrees J. Group Theory 20 1155-1173
[3]  
Cossey J(1981)Generating a random permutation with random transpositions Z. Wahrsch. Verw. Gebiete 57 159-179
[4]  
Lewis ML(2010)Non-vanishing elements of finite groups J. Algebra 323 540-545
[5]  
Tong-Viet HP(1996)Defect zero Trans. Amer. Math. Soc. 348 331-347
[6]  
Diaconis P(2011)-blocks for finite simple groups Zb. Rad. (Beogr.) 14 137-154
[7]  
Shahshahani M(1999)Nullity of graphs: an updated survey J. Algebra 222 413-423
[8]  
Dolfi S(1984)Finite group elements where no irreducible character vanishes J. Soviet Math. 26 1879-1887
[9]  
Navarro G(1965)Modular forms and representations of symmetric groups Math. Z. 90 393-403
[10]  
Pacifici E(1975)Transitivity of finite permutation groups on unordered sets Period. Math. Hungar. 6 191-195