Superstability of the Cauchy equation with squares in finite-dimensional normed algebras

被引:0
作者
Bogdan Batko
机构
[1] Pedagogical University of Cracow,Institute of Mathematics
[2] WSB-NLU,Department of Computational Mathematics
来源
Aequationes mathematicae | 2015年 / 89卷
关键词
39B82; 39B52; Stability; Superstability; Cauchy equation with squares; Normed algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Our purpose is to provide an affirmative answer to Moszner’s problem [cf. Moszner (Ann Univ Paed Crac Stud Math XI:69–94, 2012), p. 93] concerning the superstability of the Cauchy equation with squares f(x+y)2=(f(x)+f(y))2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x + y)^2 = (f(x) + f(y))^2$$\end{document}in the class of functions mapping an Abelian semigroup into a finite-dimensional normed algebra without divisors of zero.
引用
收藏
页码:785 / 789
页数:4
相关论文
共 13 条
  • [1] Baker J.(1980)The stability of the cosine equation Proc. Am. Math. Soc. 80 411-416
  • [2] Batko B.(2005)On the stability of an alternative functional equation Math. Inequal. Appl. 8 685-691
  • [3] Batko B.(2008)Stability of an alternative functional equation J. Math. Anal. Appl. 339 303-311
  • [4] Batko B.(1999)Stability of an alternative Cauchy equation on a restricted domain Aequ. Math. 57 221-232
  • [5] Tabor J.(1999)Stability of the generalized alternative Cauchy equation Abh. Math. Sem. Univ. Hamb. 69 67-73
  • [6] Batko B.(1978)Conditional Cauchy equations Glasnik Mat. 13 39-62
  • [7] Tabor J.(1993)On a characterization of strictly convex spaces Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur. 127 131-138
  • [8] Dhombres J.G.(1997)On solution and stability of functional equation Bull. Korean Math. Soc. 34 561-571
  • [9] Ger R.(2012)( Ann. Univ. Paed. Crac. Stud. Math. XI 69-94
  • [10] Ger R.(2003) +  Publ. Math. Debrecen 62/1-2 205-211