Representing integers by multilinear polynomials

被引:0
作者
Albrecht Böttcher
Lenny Fukshansky
机构
[1] Fakultät für Mathematik,Department of Mathematics
[2] TU Chemnitz,undefined
[3] Claremont McKenna College,undefined
来源
Research in Number Theory | 2020年 / 6卷
关键词
Polynomials; Integer representations; Unimodular matrices; Linear and multilinear forms; Primary 11D85; Secondary 11C08; 11C20; 11G50;
D O I
暂无
中图分类号
学科分类号
摘要
Let F(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\varvec{x})$$\end{document} be a homogeneous polynomial in n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document} variables of degree 1≤d≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le d \le n$$\end{document} with integer coefficients so that its degree in every variable is equal to 1. We give some sufficient conditions on F to ensure that for every integer b there exists an integer vector a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}$$\end{document} such that F(a)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\varvec{a}) = b$$\end{document}. The conditions provided also guarantee that the vector a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}$$\end{document} can be found in a finite number of steps.
引用
收藏
相关论文
共 50 条
[21]   Separating Multilinear Branching Programs and Formulas [J].
Dvir, Zeev ;
Malod, Guillaume ;
Perifel, Sylvain ;
Yehudayoff, Amir .
STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, :615-623
[22]   Divisibility properties of random samples of integers [J].
Fernandez, Jose L. ;
Fernandez, Pablo .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (01)
[23]   Algebraic integers with conjugates in a prescribed distribution [J].
Smith, Alexander .
ANNALS OF MATHEMATICS, 2024, 200 (01) :71-122
[24]   The measure of totally positive algebraic integers [J].
Mu, Quanwu ;
Wu, Qiang .
JOURNAL OF NUMBER THEORY, 2013, 133 (01) :12-19
[25]   On the smallest houses of reciprocal algebraic integers [J].
Wu, Qiang ;
Zhang, Zhuo .
JOURNAL OF NUMBER THEORY, 2017, 177 :170-180
[26]   Diophantine approximation by conjugate algebraic integers [J].
Roy, D ;
Waldschmidt, M .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :593-612
[27]   Intersective sets for sparse sets of integers [J].
Bienvenu, Pierre-Yves ;
Griesmer, John T. ;
Le, Anh N. ;
Le, Thai Hoang .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025, 45 (05) :1370-1402
[28]   On the ring of integers of real cyclotomic fields [J].
Yamagata, Koji ;
Yamagishi, Masakazu .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2016, 92 (06) :73-76
[29]   Summability of multilinear mappings: Littlewood, Orlicz and beyond [J].
Blasco, Oscar ;
Botelho, Geraldo ;
Pellegrino, Daniel ;
Rueda, Pilar .
MONATSHEFTE FUR MATHEMATIK, 2011, 163 (02) :131-147
[30]   Absolutely summing multilinear operators on lp spaces [J].
Blasco, Oscar ;
Botelho, Geraldo ;
Pellegrino, Daniel ;
Rueda, Pilar .
COLLECTANEA MATHEMATICA, 2016, 67 (03) :519-532