Representing integers by multilinear polynomials

被引:0
|
作者
Albrecht Böttcher
Lenny Fukshansky
机构
[1] Fakultät für Mathematik,Department of Mathematics
[2] TU Chemnitz,undefined
[3] Claremont McKenna College,undefined
来源
Research in Number Theory | 2020年 / 6卷
关键词
Polynomials; Integer representations; Unimodular matrices; Linear and multilinear forms; Primary 11D85; Secondary 11C08; 11C20; 11G50;
D O I
暂无
中图分类号
学科分类号
摘要
Let F(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\varvec{x})$$\end{document} be a homogeneous polynomial in n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document} variables of degree 1≤d≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le d \le n$$\end{document} with integer coefficients so that its degree in every variable is equal to 1. We give some sufficient conditions on F to ensure that for every integer b there exists an integer vector a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}$$\end{document} such that F(a)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\varvec{a}) = b$$\end{document}. The conditions provided also guarantee that the vector a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}$$\end{document} can be found in a finite number of steps.
引用
收藏
相关论文
共 50 条
  • [1] Representing integers by multilinear polynomials
    Boettcher, Albrecht
    Fukshansky, Lenny
    RESEARCH IN NUMBER THEORY, 2020, 6 (04)
  • [2] ON REPRESENTING INTEGERS AS PRODUCTS OF INTEGERS OF A PRESCRIBED TYPE
    ELLIOTT, PDTA
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (OCT): : 143 - 161
  • [3] Practical Multilinear Maps over the Integers
    Coron, Jean-Sebastien
    Lepoint, Tancrede
    Tibouchi, Mehdi
    ADVANCES IN CRYPTOLOGY - CRYPTO 2013, PT I, 2013, 8042 : 476 - 493
  • [4] New Multilinear Maps Over the Integers
    Coron, Jean-Sebastien
    Lepoint, Tancrede
    Tibouchi, Mehdi
    ADVANCES IN CRYPTOLOGY, PT I, 2015, 9215 : 267 - 286
  • [5] Cryptanalysis of the Multilinear Map over the Integers
    Cheon, Jung Hee
    Han, Kyoohyung
    Lee, Changmin
    Ryu, Hansol
    Stehle, Damien
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2015, PT I, 2015, 9056 : 3 - 12
  • [6] On zeros of multilinear polynomials
    Forst, Maxwell
    Fukshansky, Lenny
    JOURNAL OF NUMBER THEORY, 2023, 245 : 169 - 186
  • [7] REPRESENTING COMPLETELY BOUNDED MULTILINEAR OPERATORS
    YLINEN, K
    ACTA MATHEMATICA HUNGARICA, 1990, 56 (3-4) : 295 - 297
  • [8] Security Analysis of Multilinear Maps over the Integers
    Lee, Hyung Tae
    Seo, Jae Hong
    ADVANCES IN CRYPTOLOGY - CRYPTO 2014, PT I, 2014, 8616 : 224 - 240
  • [9] Multilinear Polynomials Modulo Composites
    Toran, Jacobo
    Chattopadhyay, Arkadev
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2010, (100): : 52 - 77
  • [10] Complexification of multilinear mappings and polynomials
    Kirwan, P
    MATHEMATISCHE NACHRICHTEN, 2001, 231 : 39 - 68